OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 14 — May. 10, 2012
  • pp: 2728–2732

High power 2 MHz passively Q-switched nanosecond Nd:YVO4/Cr4+:YAG 914 nm laser

Xin Yu, Renpeng Yan, Xudong Li, Yufei Ma, Deying Chen, and Junhua Yu  »View Author Affiliations


Applied Optics, Vol. 51, Issue 14, pp. 2728-2732 (2012)
http://dx.doi.org/10.1364/AO.51.002728


View Full Text Article

Enhanced HTML    Acrobat PDF (310 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report a high-power, high-repetition-rate end-pumped passively Q-switched Nd:YVO4/Cr4+: yttrium aluminum garnet 914 nm laser. The maximum output power of 3.8 W at 914 nm is achieved at 2 MHz with the absorbed pump power of 25.2 W. The highest single pulse energy of a pulsed 914 nm laser reaches 2.3 μJ with a pulse width of 27.1 ns.

© 2012 Optical Society of America

OCIS Codes
(140.3480) Lasers and laser optics : Lasers, diode-pumped
(140.3540) Lasers and laser optics : Lasers, Q-switched

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: January 13, 2012
Revised Manuscript: March 30, 2012
Manuscript Accepted: April 5, 2012
Published: May 10, 2012

Citation
Xin Yu, Renpeng Yan, Xudong Li, Yufei Ma, Deying Chen, and Junhua Yu, "High power 2 MHz passively Q-switched nanosecond Nd:YVO4/Cr4+:YAG 914 nm laser," Appl. Opt. 51, 2728-2732 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-14-2728


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. J. Spühler, R. Paschotta, R. Fluck, B. Braun, M. Moser, G. Zhang, E. Gini, and U. Keller, “Experimentally confirmed design guidelines for passively Q-switched microchip lasers using semiconductor saturable absorbers,” J. Opt. Soc. Am. 16, 376–388 (1999). [CrossRef]
  2. Y. Ma, X. Yu, X. Li, R. Fan, and J. Yu, “Comparison on performance of passively Q-switched laser properties of continuous-grown composite GdVO4/Nd:GdVO4 and YVO4/Nd:YVO4 crystals under direct pumping,” Appl. Opt. 50, 3854–3859 (2011). [CrossRef]
  3. J. Gao, X. Yu, F. Chen, X. Li, R. Yan, K. Zhang, J. Yu, and Y. Wang, “12.0 W continuous-wave diode-end-pumped Nd:GdVO4 laser with high brightness operating at 912 nm,” Opt. Express 17, 3574–3580 (2009). [CrossRef]
  4. X. Yu, R. P. Yan, M. Luo, F. Chen, X. D. Li, and J. H. Yu, “Laser performance of grown-together YVO4/Nd:YVO4 composite crystal at continuous-wave 914 nm,” Laser Phys. 19, 1960–1963 (2009). [CrossRef]
  5. F. Chen, X. Yu, R. Yan, X. Li, C. Wang, J. Yu, and Z. Zhang, “High-repetition-rate, high-peak-power linear-polarized 473 nm Nd:YAG/BiBO blue laser by extra-cavity frequency-doubling,” Opt. Lett. 35, 2714–2716 (2010). [CrossRef]
  6. T. Y. Fan and R. L. Byer, “Modeling and CW operation of a quasi-three-level 946 nm Nd:YAG laser,” IEEE J. Quantum Electron. 23, 605–612 (1987). [CrossRef]
  7. Y. P. Huang, K. W. Su, A. Li, Y. F. Chen, and K. F. Huang, “High-peak-power passively Q-switched Nd:YAG laser at 946 nm,” Appl. Phys. 91, 429–432 (2008).
  8. H. Liu, O. Hornia, Y. C. Chen, and S. H. Zhou, “Single-frequency Q-switched Cr-Nd:YAG laser operating at 946 nm wavelength,” IEEE J. Sel. Top. Quantum Electron. 3, 26–28 (1997). [CrossRef]
  9. L. Zhang, C. Y. Li, B. H. Feng, Z. Y. Wei, D. H. Li, P. M. Fu, and Z. G. Zhang, “Diode-pumped passive Q-switched 946 nm Nd:YAG laser with 2.1 W average output power,” Chin. Phys. Lett. 22, 1420–1422 (2005). [CrossRef]
  10. F. Chen, X. Yu, X. Li, R. Yan, C. Wang, M. Luo, Z. Zhang, and J. Yu, “Diode-pumped passively Q-switched 912 nm Nd:GdVO4 laser and pulsed deep-blue laser by intracavity frequency-doubling,” Opt. Commun. 283, 4036–4040 (2010). [CrossRef]
  11. X. Y. Zhang, A. Brenier, J. Y. Wang, and H. J. Zhang, “Absorption cross-sections of Cr4+:YAG at 946 and 914 nm,” Opt. Mater. 26, 293–296 (2004). [CrossRef]
  12. R. Horiuchi, K. Adachi, G. Watanabe, K. Tei, and S. Yamaguchi, “1.4 MHz repetition rate electro-optic Q-switched Nd:GdVO4 laser,” Opt. Express 16, 16729–16734 (2008). [CrossRef]
  13. Y. Wang, L. Huang, M. Gong, H. Zhang, M. Lei, and F. He, “1 MHz repetition rate single-frequency gain-switched Nd:YAG microchip laser,” Laser Phys. Lett. 4, 580–583 (2007). [CrossRef]
  14. N. T. Nghia, N. V. Hao, V. A. Orlovich, and N. D. Hung, “Generation of nanosecond laser pulses at a 2.2 MHz repetition rate by a cw diode-pumped passively Q-switched Nd3+:YVO4 laser,” Quantum Electron. 41, 790–793 (2011). [CrossRef]
  15. Y. Huang and F. Chang, “Modeling of active and passive Q-switched intracavity frequency-doubled solid state lasers,” Opt. Commun. 256, 381–393 (2005). [CrossRef]
  16. J. Liu, B. Ozygus, S. Yang, J. Erhard, U. Seeling, A. Ding, and H. Weber, “Efficient passive Q-switching operation of a diode-pumped Nd:GdVO4 laser with a Cr4+:YAG saturable absorber,” J. Opt. Soc. Am. 20, 652–661 (2003). [CrossRef]
  17. X. Zhang, S. Zhao, Q. Wang, Q. Zhang, L. Sun, and S. Zhang, “Optimization of Cr4+-doped saturable-absorber Q-switched lasers,” IEEE J. Quantum Electron. 33, 2286–2294 (1997). [CrossRef]
  18. X. Zhang, Y. Ju, and Y. Wang, “Theoretical and experimental investigation of actively Q-switched Tm, Ho:YLF lasers,” Opt. Express 14, 7745–7750 (2006). [CrossRef]
  19. Y. F. Chen, C. C. Liao, Y. P. Lan, and S. C. Wang, “Determination of the Auger upconversion rate in fiber-coupled diode end-pumped Nd:YAG and Nd:YVO4 crystals,” Appl. Phys. 70, 487–490 (2000). [CrossRef]
  20. Y. Wang, J. Liu, Q. Liu, Y. Li, and K. Zhang, “Stable continuous-wave single-frequency Nd:YAG blue laser at 473 nm considering the influence of the energy-transfer upconversion,” Opt. Express 18, 12044–12051 (2010). [CrossRef]
  21. Y. Wang and R. Zhang, “Optimizing the mode-to-pump ratio in end-pumped quasi-three-level Nd-doped lasers considering the energy-transfer upconversion,” J. Phys. 44, 135401 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited