OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 15 — May. 20, 2012
  • pp: 2935–2940

Chaotic ultra-wideband radio generator based on an optoelectronic oscillator with a built-in microwave photonic filter

Li Xian Wang, Ning Hua Zhu, Jian Yu Zheng, Jian Guo Liu, and Wei Li  »View Author Affiliations


Applied Optics, Vol. 51, Issue 15, pp. 2935-2940 (2012)
http://dx.doi.org/10.1364/AO.51.002935


View Full Text Article

Enhanced HTML    Acrobat PDF (590 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We induce a microwave photonic bandpass filter into an optoelectronic oscillator to generate a chaotic ultra-wideband signal in both the optical and electrical domain. The theoretical analysis and numerical simulation indicate that this system is capable of generating band-limited high-dimensional chaos. Experimental results coincide well with the theoretical prediction and show that the power spectrum of the generated chaotic signal basically meets the Federal Communications Commission indoor mask. The generated chaotic carrier is further intensity modulated by a 10 MHz square wave, and the waveform of the output ultra-wideband signal is measured for demonstrating the chaotic on-off keying modulation.

© 2012 Optical Society of America

OCIS Codes
(060.2330) Fiber optics and optical communications : Fiber optics communications
(060.5060) Fiber optics and optical communications : Phase modulation
(140.1540) Lasers and laser optics : Chaos
(230.4910) Optical devices : Oscillators

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: February 3, 2012
Revised Manuscript: March 25, 2012
Manuscript Accepted: March 25, 2012
Published: May 16, 2012

Citation
Li Xian Wang, Ning Hua Zhu, Jian Yu Zheng, Jian Guo Liu, and Wei Li, "Chaotic ultra-wideband radio generator based on an optoelectronic oscillator with a built-in microwave photonic filter," Appl. Opt. 51, 2935-2940 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-15-2935


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Yao, F. Zeng, and Q. Wang, “Photonic generation of ultrawideband signals,” J. Lightwave Technol. 25, 3219–3235 (2007). [CrossRef]
  2. S. Pan and J. Yao, “UWB-over-fiber communications: modulation and transmission,” J. Lightwave Technol. 28, 2445–2455 (2010). [CrossRef]
  3. M. Ran, B. I. Lembrikov, and Y. Ben Ezra, “Ultra-wideband radio-over-optical fiber concepts, technologies and applications,” IEEE Photonics J. 2, 36–48 (2010). [CrossRef]
  4. S. Pan and J. Yao, “Switchable UWB pulse generation using a phase modulator and a reconfigurable asymmetric Mach-Zehnder interferometer,” Opt. Lett. 34, 160–162 (2009). [CrossRef]
  5. M. Bolea, J. Mora, B. Ortega, and J. Capmany, “Optical UWB pulse generator using an N tap microwave photonic filter and phase inversion adaptable to different pulse modulation formats,” Opt. Express 17, 5023–5032 (2009). [CrossRef]
  6. X. Yu, T. B. Gibbon, and I. T. Monroy, “Experimental demonstration of all-optical 781.25  mb/s binary phase-coded UWB signal generation and transmission,” IEEE Photon. Technol. Lett. 21, 1235–1237 (2009). [CrossRef]
  7. S. M. Han, O. Popov, and A. S. Dmitriev, “Flexible chaotic UWB communication system with adjustable channel bandwidth in CMOS technology,” IEEE Trans. Microwave Theory Tech. 56, 2229–2236 (2008). [CrossRef]
  8. S. S. Lee, S. M. Han, M. H. Son, A. Dmitriev, and A. Panas, “Low power UWB RF transceiver for wireless headset,” in Proceedings of IEEE International Radio Frequency Integration Technology Workshop (IEEE, 2005), pp. 61–64.
  9. A. S. Dmitriev, A. V. Kletsov, A. M. Laktyushkin, A. I. Panas, and S. O. Starkov, “Ultrawideband wireless communications based on dynamic chaos,” J. Commun. Technol. Electron. 51, 1126–1140 (2006). [CrossRef]
  10. S. M. Han, M. H. Son, and Y. H. Kim, “Chaotic UWB communication system for low-rate wireless connectivity applications,” IEICE Trans. Commun. E90B, 2891–2896 (2007). [CrossRef]
  11. M. I. Jeong, J. N. Lee, and C. S. Lee, “Design of quasi-chaotic signal generation circuit for UWB chaotic-OOK system,” J. Electromagn. Waves Appl. 22, 1725–1733 (2008). [CrossRef]
  12. L. Illing and D. J. Gauthier, “Ultra-high-frequency chaos in a time-delay electronic device with band-limited feedback,” Chaos 16, 033119-1 (2006). [CrossRef]
  13. J. Y. Zheng, M. J. Zhang, A. B. Wang, and Y. C. Wang, “Photonic generation of ultrawideband pulse using semiconductor laser with optical feedback,” Opt. Lett. 35, 1734–1736 (2010). [CrossRef]
  14. X. S. Yao and L. Maleki, “Optoelectronic microwave oscillator,” J. Opt. Soc. Am. B 13, 1725–1735 (1996). [CrossRef]
  15. M. Nourine, Y. K. Chembo, and L. Larger, “Wideband chaos generation using a delayed oscillator and a two-dimensional nonlinearity induced by a quadrature phase-shift-keying electro-optic modulator,” Opt. Lett. 36, 2833–2835 (2011). [CrossRef]
  16. V. S. Udaltsov, L. Larger, J. P. Goedgebuer, M. W. Lee, E. Genin, and W. T. Rhodes, “Bandpass chaotic dynamics of electronic oscillator operating with delayed nonlinear feedback,” IEEE Trans. Circuits Systems 49, 1006–1009 (2002). [CrossRef]
  17. E. Genin, L. Larger, J. P. Goedgebuer, M. W. Lee, R. Ferriere, and X. Bavard, “Chaotic oscillations of the optical phase for multigigahertz-bandwidth secure communications,” IEEE J. Quantum Electron 40, 294–298 (2004). [CrossRef]
  18. K. E. Callan, L. Illing, Z. Gao, D. J. Gauthier, and E. Schoell, “Broadband chaos generated by an optoelectronic oscillator,” Phys. Rev. Lett. 104, 113901 (2010). [CrossRef]
  19. L. Kwonhyung, K. Soocheol, K. Jaehyon, K. Younghwan, and P. Hyuncheol, “A chaotic UWB system for home networks,” in International Conference on Hybrid Information Technology (IEEE, 2006), pp. 400–405.
  20. W. Li and J. Yao, “A wideband frequency tunable optoelectronic oscillator incorporating a tunable microwave photonic filter based on a phase-shifted fiber Bragg grating,” Proc. SPIE 8007, 80070F (2011).
  21. L. Illing and D. J. Gauthier, “Hopf bifurcations in time-delay systems with band-limited feedback,” Physica D 210, 180–202 (2005). [CrossRef]
  22. R. Lavrov, M. Peil, M. Jacquot, L. Larger, V. Udaltsov, and J. Dudley, “Electro-optic delay oscillator with nonlocal nonlinearity: optical phase dynamics, chaos and synchronization,” Phys. Rev. E 80, 026207 (2009). [CrossRef]
  23. Y. K. Chembo, L. Larger, H. Tavernier, R. Bendoula, E. Rubiola, and P. Colet, “Dynamic instabilities of microwaves generated with optoelectronic oscillators,” Opt. Lett. 32, 2571–2573 (2007). [CrossRef]
  24. G. Kolumban and B. Frigyik, “Robust chaotic communications without synchronization,” in Proceedings of the European Conference on Circuit Theory and Design (European Circuit Society, 1999), pp. 445–448.
  25. S. M. Han, O. Popov, and A. S. Dmitriev, “Flexible chaotic UWB communication system with adjustable channel bandwidth in CMOS technology,” IEEE Trans. Microwave Theory Tech. 56, 2229–2236 (2008). [CrossRef]
  26. F. Zeng and J. P. Yao, “Investigation of phase-modulator-based all-optical bandpass microwave filter,” J. Lightwave Technol. 23, 1721–1728 (2005). [CrossRef]
  27. S. J. Xiao and A. M. Weiner, “Programmable photonic microwave filters with arbitrary ultra-wideband phase response,” IEEE Trans. Microwave Theory Tech. 54, 4002–4008 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited