OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 15 — May. 20, 2012
  • pp: 2979–2986

Ultrashort pulsed fiber laser welding and sealing of transparent materials

Huan Huang, Lih-Mei Yang, and Jian Liu  »View Author Affiliations

Applied Optics, Vol. 51, Issue 15, pp. 2979-2986 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (892 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper, methods of welding and sealing optically transparent materials using an ultrashort pulsed (USP) fiber laser are demonstrated which overcome the limit of small area welding of optical materials. First, the interaction of USP fiber laser radiation inside glass was studied and single line welding results with different laser parameters were investigated. Then multiline scanning was used to obtain successful area bonding. Finally, complete four-edge sealing of fused silica substrates with a USP laser was demonstrated and the hermetic seal was confirmed by water immersion test. This laser microwelding technique can be extended to various applications in the semiconductor industry and precision optic manufacturing.

© 2012 Optical Society of America

OCIS Codes
(140.3390) Lasers and laser optics : Laser materials processing
(140.7090) Lasers and laser optics : Ultrafast lasers

ToC Category:
Lasers and Laser Optics

Original Manuscript: October 31, 2011
Revised Manuscript: February 8, 2012
Manuscript Accepted: February 15, 2012
Published: May 18, 2012

Huan Huang, Lih-Mei Yang, and Jian Liu, "Ultrashort pulsed fiber laser welding and sealing of transparent materials," Appl. Opt. 51, 2979-2986 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. Niklaus, G. Stemme, J. Q. Lu, and R. Gutmann, “Adhesive wafer bonding,” J. Appl. Phys. 99, 031101 (2006). [CrossRef]
  2. V. Greco, F. Marchesini, and G. Molesini, “Optical contact and van der Waals interactions: the role of the surface topography in determining the bonding strength of thick glass plates,” J. Opt. A 3, 85–88 (2001). [CrossRef]
  3. M. Wild, A. Gillner, and R. Poprawe, “Locally selective bonding of silicon and glass with laser,” Sens. Actuators A 93, 63–69 (2001). [CrossRef]
  4. C. Yao, B. Xu, X. Zhang, J. Huang, J. Fu, and Y. Wu, “Interface microstructure and mechanical properties of laser welding copper-steel dissimilar joint,” Opt. Lasers Eng. 47, 807–814 (2009). [CrossRef]
  5. X. Cao and M. Jahazi, “Effect of welding speed on butt joint quality of Ti-6Al-4V alloy welded using a high-power Nd:YAG laser,” Opt. Lasers Eng. 47, 1231–1241 (2009). [CrossRef]
  6. A. Marcinkevičius, S. Juodkazis, M. Watanabe, M. Miwa, S. Matsuo, H. Misawa, and J. Nishii, “Femtosecond laser-assisted three-dimensional microfabrication in silica,” Opt. Lett. 26, 277–279 (2001). [CrossRef]
  7. H. Huang and Z. Guo, “Ultra-short pulsed laser PDMS thin-layer separation and micro-fabrication,” J. Micromech. Microeng. 19, 055007 (2009). [CrossRef]
  8. H. Huang and Z. Guo, “Human dermis separation via ultra-short pulsed laser plasma-mediated ablation,” J. Phys. D 42, 165204 (2009). [CrossRef]
  9. A. Y. Sajjadi, K. Mitra, and M. Grace, “Ablation of subsurface tumors using an ultra-short pulse laser,” Opt. Lasers Eng. 49, 451–456 (2010).
  10. L. Shah, A. Arai, S. Eaton, and P. Herman, “Waveguide writing in fused silica with a femtosecond fiber laser at 522 nm and 1 MHz repetition rate,” Opt. Express 13, 1999–2006 (2005). [CrossRef]
  11. K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71, 3329–3331 (1997). [CrossRef]
  12. S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys. A 77, 109–111 (2003). [CrossRef]
  13. C. B. Schaffer, J. F. García, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys. A 76, 351–354 (2003). [CrossRef]
  14. S. Richter, S. Döring, A. Tünnermann, and S. Nolte, “Bonding of glass with femtosecond laser pulses at high repetition rates,” Appl. Phys. A 103, 257–261 (2011). [CrossRef]
  15. W. Watanabe, S. Onda, T. Tamaki, and K. Itoh, “Direct joining of glass substrates by 1 kHz femtosecond laser pulses,” Appl. Phys. B 87, 85–89 (2007). [CrossRef]
  16. I. Miyamoto, A. Horn, J. Gottmann, D. Wortmann, and F. Yoshino, “Fusion welding of glass using femtosecond laser pulses with high-repetition rates,” J. Laser Micro Nanoeng. 2, 57–63 (2007). [CrossRef]
  17. S. Vukeli, P. Kongsuwan, and Y. L. Yao, “Ultrafast laser induced structural modification of fused silica—Part I: feature formation mechanisms,” J. Manuf. Sci. Eng. 132, 061012 (2010).
  18. A. Horn, I. Mingareev, A. Werth, M. Kachel, and U. Brenk, “Investigations on ultrafast welding of glass—glass and glass—silicon,” Appl. Phys. A 93, 171–175(2008). [CrossRef]
  19. T. Tamaki, W. Watanabe, and K. Itoh, “Laser micro-welding of transparent materials by a localized heat accumulation effect using a femtosecond fiber laser at 1558 nm,” Opt. Express 14, 10460–10468 (2006). [CrossRef]
  20. I. Miyamoto, A. Horn, and J. Gottmann, “Local melting of glass material and its application to direct fusion welding by ps-laser pulses,” J. Laser Micro Nanoeng. 2, 7–14 (2007). [CrossRef]
  21. K. Cvecek, I. Miyamoto, J. Strauss, M. Wolf, T. Frick, and M. Schmidt, “Sample preparation method for glass welding by ultrashort laser pulses yields higher seam strength,” Appl. Opt. 50, 1941–1944 (2011). [CrossRef]
  22. T. Tamaki, W. Watanabe, J. Nishii, and K. Itoh, “Welding of transparent materials using femtosecond laser pulses,” Jpn. J. Appl. Phys. 44, L687–L689 (2005). [CrossRef]
  23. W. Watanabe, S. Onda, T. Tamaki, K. Itoh, and J. Nishii, “Space-selective laser joining of dissimilar transparent materials using femtosecond laser pulses,” Appl. Phys. Lett. 89, 021106 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited