OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 18 — Jun. 20, 2012
  • pp: 4103–4108

Experimental realization of the devil’s vortex Fresnel lens with a programmable spatial light modulator

Mark Mitry, Danielle C. Doughty, Jan L. Chaloupka, and Matthew E. Anderson  »View Author Affiliations


Applied Optics, Vol. 51, Issue 18, pp. 4103-4108 (2012)
http://dx.doi.org/10.1364/AO.51.004103


View Full Text Article

Enhanced HTML    Acrobat PDF (762 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a unique method for experimentally generating multiple vortices by way of a devil’s vortex lens combined with a Fresnel lens using a spatial light modulator. These lenses have the multifocal properties of fractal zone plates combined with the orbital angular momentum of a spiral phase plate and can be tailored to fit within a small space on an optical bench. Results are presented alongside numerical simulations, demonstrating the robust nature of both the experimental method and the predictive power of the Huygens–Fresnel wavelet theory.

© 2012 Optical Society of America

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(050.4865) Diffraction and gratings : Optical vortices

ToC Category:
Diffraction and Gratings

History
Original Manuscript: February 23, 2012
Revised Manuscript: April 19, 2012
Manuscript Accepted: April 19, 2012
Published: June 14, 2012

Citation
Mark Mitry, Danielle C. Doughty, Jan L. Chaloupka, and Matthew E. Anderson, "Experimental realization of the devil’s vortex Fresnel lens with a programmable spatial light modulator," Appl. Opt. 51, 4103-4108 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-18-4103


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. A. M. Dirac, “Quantised singularities in the electromagnetic field,” Proc. R. Soc. A 133, 60–72 (1931). [CrossRef]
  2. J. F. Nye and M. V. Berry, “Dislocations in wavetrains,” Proc. R. Soc. A 336, 165–190 (1974). [CrossRef]
  3. L. Allen, M. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre–Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992). [CrossRef]
  4. N. R. Heckenberg, R. McDuff, C. P. Smith, and A. G. White, “Generation of optical phase singularities by computer-generated holograms,” Opt. Lett. 17, 221–223 (1992). [CrossRef]
  5. M. Reicherter, T. Haist, E. U. Wagemann, and H. J. Tiziani, “Optical particle trapping with computer-generated holograms written on a liquid-crystal display,” Opt. Lett. 24, 608–610 (1999). [CrossRef]
  6. K. T. Gahagan and G. A. Swartzlander, “Optical vortex trapping of particles,” Opt. Lett. 21, 827–829 (1996). [CrossRef]
  7. K. Ladavac and D. G. Grier, “Microoptomechanical pump assembled and driven by holographic optical vortex arrays,” Opt. Express 12, 1144–1149 (2004). [CrossRef]
  8. J. Leach, B. Jack, J. Romero, A. K. Jha, A. M. Yao, S. Franke-Arnold, D. G. Ireland, R. W. Boyd, S. M. Barnett, and M. J. Padgett, “Quantum correlations in optical angle—orbital angular momentum variables,” Science 329, 662–665 (2010). [CrossRef]
  9. S. Fu¨rhapter, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “Spiral phase contrast imaging in microscopy,” Opt. Express 13, 689–694 (2005). [CrossRef]
  10. I. Augustyniak, A. Popiolek-Masajada, J. Masajada, and S. Drobczyński, “New scanning technique for the optical vortex microscope,” Appl. Opt. 51, C117–C124 (2012). [CrossRef]
  11. M. R. Dennis, K. O’Holleran, and M. J. Padgett, “Singular optics: optical vortices and polarization singularities,” in Vol. 53 of Progress in Optics (Elsevier, 2009), Chap. 5, pp. 293–363. [CrossRef]
  12. G. Saavedra, W. D. Furlan, and J. A. Monsoriu, “Fractal zone plates,” Opt. Lett. 28, 971–973 (2003). [CrossRef]
  13. J. A. Davis, L. Ramirez, J. A. Martn-Romo, T. Alieva, and M. L. Calvo, “Focusing properties of fractal zone plates: experimental implementation with a liquid-crystal display,” Opt. Lett. 29, 1321–1323 (2004). [CrossRef]
  14. S. H. Tao, x. C. Yuan, J. Lin, and R. Burge, “Sequence of focused optical vortices generated by a spiral fractal zone plate,” Appl. Phys. Lett. 89, 031105 (2006). [CrossRef]
  15. J. A. Monsoriu, W. D. Furlan, G. Saavedra, and F. Gimnez, “Devil’s lenses,” Opt. Express 15, 13858–13864 (2007). [CrossRef]
  16. D. Wu, L. G. Niu, Q. D. Chen, R. Wang, and H. B. Sun, “High efficiency multilevel phase-type fractal zone plates,” Opt. Lett. 33, 2913–1915 (2008). [CrossRef]
  17. P. Bak, “The devil’s staircase,” Phys. Today39(12), 38–45 (1986). [CrossRef]
  18. D. R. Chalice, “A characterization of the Cantor function,” Am. Math. Mon. 98, 255–258 (1991). [CrossRef]
  19. W. D. Furlan, F. Gimnez, A. Calatayud, and J. A. Monsoriu, “Devil’s vortex-lenses,” Opt. Express 17, 21891–21896 (2009). [CrossRef]
  20. D. Cottrell, “Coherent Optics freeware,” http://www-rohan.sdsu.edu/~dcottrel/ .
  21. A. Calatayud, J. A. Rodrigo, L. Remón, W. D. Furlan, G. Cristóbal, and J. A. Monsoriu, “Experimental generation and characterization of Devil’s vortex-lenses,” Appl. Phys. B 106, 915–919 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited