OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 18 — Jun. 20, 2012
  • pp: 4139–4150

Target detection with randomized thresholds for lidar applications

Steven E. Johnson  »View Author Affiliations


Applied Optics, Vol. 51, Issue 18, pp. 4139-4150 (2012)
http://dx.doi.org/10.1364/AO.51.004139


View Full Text Article

Enhanced HTML    Acrobat PDF (754 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Light detection and ranging (lidar) systems use binary hypothesis tests to detect the presence of a target in a range interval. For systems that count photon detections, hypothesis test thresholds are normally set so that a target detection is declared if the number of detections exceeds a particular number. When this method is employed, the false alarm probability can not be selected arbitrarily. In this paper, a hypothesis test that uses randomized thresholds is described. This randomized method of thresholding allows lidar operation at any false alarm probability. When there is a maximum allowable false alarm probability, the hypothesis test that uses randomized thresholds generally produces higher target detection probabilities than the conventional (nonrandom) hypothesis test.

© 2012 Optical Society of America

OCIS Codes
(030.5260) Coherence and statistical optics : Photon counting
(030.5290) Coherence and statistical optics : Photon statistics
(280.3640) Remote sensing and sensors : Lidar
(040.1345) Detectors : Avalanche photodiodes (APDs)

ToC Category:
Remote Sensing and Sensors

History
Original Manuscript: February 15, 2012
Manuscript Accepted: April 10, 2012
Published: June 15, 2012

Citation
Steven E. Johnson, "Target detection with randomized thresholds for lidar applications," Appl. Opt. 51, 4139-4150 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-18-4139


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. Flint, “Analysis and optimization of laser ranging techniques,” IEEE Trans. Mil. Electron. 8, 22–28 (1964). [CrossRef]
  2. J. Goodman, “Some effects of target-induced scintillation on optical radar performance,” Proc. IEEE 53, 1688–1700 (1965). [CrossRef]
  3. P. Gatt and S. Henderson, “Laser radar detection statistics: a comparison of coherent and direct detection intensity receivers,” Proc. SPIE 4377, 251–262 (2001). [CrossRef]
  4. G. Osche, Optical Detection Theory (Wiley-Interscience, 2002).
  5. P. Gatt, S. Johnson, and T. Nichols, “Geiger-mode avalanche photodiode ladar receiver performance characteristics and detection statistics,” Appl. Opt. 48, 3261–3276 (2009). [CrossRef]
  6. R. Richmond and S. Cain, Direct-Detection LADAR Systems (SPIE Optical Engineering Press, 2010).
  7. H. Poor, An Introduction to Signal Detection and Estimation (Springer, 1994).
  8. L. Scharf, Statistical Signal Processing (Addison-Wesley, 1991).
  9. J. Goodman, Statistical Optics (Wiley-Interscience, 1985).
  10. B. Rye and R. Hardesty, “Discrete spectral peak estimation in incoherent backscatter heterodyne lidar. I. Spectral accumulation and the Cramer-Rao lower bound,” IEEE Trans. Geosci. Remote Sens. 31, 16–27 (1993). [CrossRef]
  11. S. Cain, R. Richmond, and E. Armstrong, “Flash light detection and ranging accuracy limits for returns from single opaque surfaces via Cramer-Rao bounds,” Appl. Opt. 45, 6154–6162 (2006). [CrossRef]
  12. S. Johnson and S. Cain, “Bound on range precision for shot-noise limited ladar systems,” Appl. Opt. 47, 5147–5154 (2008). [CrossRef]
  13. S. Johnson, “Cramer-Rao lower bound on range error for LADARs with Geiger-mode avalanche photodiodes,” Appl. Opt. 49, 4581–4590 (2010). [CrossRef]
  14. M. Oh, H. Kong, and T. Kim, “Systematic experiments for proof of Poisson statistics on direct-detection laser radar using Geiger mode avalanche photodiode,” Curr. Appl. Phys. 10, 1041–1045 (2010). [CrossRef]
  15. S. Johnson, “Range precision of ladar systems,” Ph.D. thesis, Air Force Institute of Technology (2008).
  16. R. McIntyre, “The distribution of gains in uniformly multiplying avalanche photodiodes: theory,” IEEE Trans. Electron Devices 19, 703–713 (1972). [CrossRef]
  17. D. Youmans, “Avalanche photodiode detection statistics for direct detection laser radar,” Proc. SPIE 1633, 41–52 (1992). [CrossRef]
  18. G. Williams and A. Huntington, “Probabilistic analysis of linear mode vs. Geiger mode APD FPAs for advanced LADAR enabled interceptors,” Proc. SPIE 6220, 622008 (2006). [CrossRef]
  19. D. Youmans and G. Hart, “Numerical evaluation of the M parameter for direct detection ladar,” Proc. SPIE 3380, 176–187 (1998). [CrossRef]
  20. D. Youmans, “Receiver-operating characteristic for several multiple hypothesis range-rate filter algorithms,” Proc. SPIE 7684, 768412 (2010). [CrossRef]
  21. M. O’Brien and D. Fouche, “Simulation of 3d laser radar systems,” Lincoln Lab. J. 15, 37–60 (2005).
  22. R. Younger, K. McIntosh, J. Chludzinski, D. Oakley, L. Mahoney, J. Funk, J. Donnelly, and S. Verghese, “Crosstalk analysis of integrated Geiger-mode avalanche photodiode focal plane arrays,” Proc. SPIE 7320, 73200Q (2009). [CrossRef]
  23. G. Osche, “Single- and multiple-pulse noncoherent detection statistics associated with partially developed speckle,” Appl. Opt. 39, 4255–4262 (2000). [CrossRef]
  24. H. Dautet, P. Deschamps, B. Dion, A. MacGregor, D. MacSween, R. McIntyre, C. Trottier, and P. Webb, “Photon counting techniques with silicon avalanche photodiodes,” Appl. Opt. 32, 3894–3900 (1993). [CrossRef]
  25. P. Owens, J. Rarity, P. Tapster, D. Knight, and P. Townsend, “Photon counting with passively quenched germanium avalanche,” Appl. Opt. 33, 6895–6901 (1994). [CrossRef]
  26. S. Johnson, P. Gatt, and T. Nichols, “Analysis of Geiger-mode APD laser radars,” Proc. SPIE 5086, 359–368 (2003). [CrossRef]
  27. M. Henriksson, “Detection probabilities for photon-counting avalanche photodiodes applied to a laser radar system,” Appl. Opt. 44, 5140–5147 (2005). [CrossRef]
  28. P. Gatt, S. Johnson, and T. Nichols, “Dead-time effects on Geiger-mode APD performance,” Proc. SPIE 6550, 65500I (2007). [CrossRef]
  29. P. Gatt, T. Nichols, and S. Johnson, “Finite dead-time Geiger-mode APD performance,” in 14th Coherent Laser Radar Conference (2007).
  30. D. Fouche, “Detection and false-alarm probabilities for laser radars that use Geiger-mode detectors,” Appl. Opt. 42, 5388–5398 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited