OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 18 — Jun. 20, 2012
  • pp: 4186–4195

Effect and suppression of secondary fringes in FATWindII

Chunmin Zhang, Haishan Dai, Tingkui Mu, and Yan Qu  »View Author Affiliations


Applied Optics, Vol. 51, Issue 18, pp. 4186-4195 (2012)
http://dx.doi.org/10.1364/AO.51.004186


View Full Text Article

Enhanced HTML    Acrobat PDF (1934 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

By considering the instrument as a complex operator on the incident electric field, a model to calculate secondary fringes of the Field-widened, Achromatic, Temperature-compensated Wind Imaging Interferometer (FATWindII) has been built. The distribution of secondary fringes on a charge coupled device detector has been plotted. The effects of secondary fringes on inversion errors of temperature and wind velocity have been presented. The results show that antireflection coating on the air/glass interface cannot meet the accuracy requirement of FATWindII. A theoretical method for calculating the optimal wedge angles of compensating glasses is derived to suppress the secondary fringes while preserving the primary ones. By adopting both methods, coating with antireflection film and shaping wedge compensating glasses, the relative intensity of secondary fringes is reduced to below 2.5% and the inversion errors of temperature and wind velocity introduced by the effects of secondary fringes can be minimized to about 0.05 K and 0.045ms1, respectively.

© 2012 Optical Society of America

OCIS Codes
(100.2650) Image processing : Fringe analysis
(120.4570) Instrumentation, measurement, and metrology : Optical design of instruments
(010.7295) Atmospheric and oceanic optics : Visibility and imaging

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: February 28, 2012
Manuscript Accepted: April 28, 2012
Published: June 18, 2012

Citation
Chunmin Zhang, Haishan Dai, Tingkui Mu, and Yan Qu, "Effect and suppression of secondary fringes in FATWindII," Appl. Opt. 51, 4186-4195 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-18-4186


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. G. Shepherd, G. Thuillier, W. A. Gault, B. H. Solheim, C. Hersom, J. M. Alunni, J. F. Brun, S. Brune, P. Charlot, L. L. Cogger, D. L. Desaulniers, W. F. J. Evans, R. L. Gattinger, F. Girod, D. Harvie, R. H. Hum, D. J. W. Kendall, E. J. Llewellyn, R. P. Lowe, J. Ohrt, F. Pasternak, O. Peillet, I. Powell, Y. Rochon, W. E. Ward, R. H. Wiens, and J. Wimperis, “WINDII, the Wind Imaging Interferometer on the Upper-Atmosphere Research Satellite,” J. Geophys. Res. Atmos. 98, 10725–10750 (1993). [CrossRef]
  2. G. Thuillier and G. G. Shepherd, “Fully compensated Michelson interferometer of fixed-path difference,” Appl. Opt. 24, 1599–1603 (1985). [CrossRef]
  3. C. M. Zhang, B. C. Zhao, B. Xiangli, and Y. Li, “Interference image spectroscopy for upper atmospheric wind field measurement,” Optik 117, 265–270 (2006). [CrossRef]
  4. C. M. Zhang and J. He, “The generalization of upper atmospheric wind and temperature based on the Voigt line shape profile,” Opt. Express 14, 12560–12560 (2006). [CrossRef]
  5. C. M. Zhang, H. C. Zhu, and B. C. Zhao, “The tempo-spatially modulated polarization atmosphere Michelson interferometer,” Opt. Express 19, 9626–9635 (2011). [CrossRef]
  6. T. K. Mu and C. M. Zhang, “A novel polarization interferometer for measuring upper atmospheric winds,” Chin. Phys. B 19, 060702 (2010). [CrossRef]
  7. C. M. Zhang and X. H. Jian, “Wide-spectrum reconstruction method for a birefringence interference imaging spectrometer,” Opt. Lett. 35, 366–368 (2010). [CrossRef]
  8. T. K. Mu, C. M. Zhang, and B. C. Zhao, “Optical path difference evaluation of the polarization interference imaging spectrometer,” Opt. Commun. 282, 1984–1992 (2009). [CrossRef]
  9. X. H. Jian, C. M. Zhang, L. Zhang, and B. C. Zhao, “The data processing of the temporarily and spatially mixed modulated polarization interference imaging spectrometer,” Opt. Express 18, 5674–5680 (2010). [CrossRef]
  10. R. L. Hilliard and G. G. Shepherd, “Wide-angle Michelson interferometer for measuring Doppler line widths,” J. Opt. Soc. Am. 56, 362 (1966). [CrossRef]
  11. J. C. Bird, F. Liang, B. H. Solheim, and G. G. Shepherd, “A polarizing Michelson interferometer for measuring thermospheric winds,” Meas. Sci. Technol. 6, 1368–1378 (1995). [CrossRef]
  12. A. Title and H. Ramsey, “Improvements in birefringent filters. 6: analog birefringent elements,” Appl. Opt. 19, 2046–2058 (1980). [CrossRef]
  13. C. H. Hersom, “Characterization of the WINDII instrument for determination of winds, temperature and emission rates,” Ph.D. thesis (York University, 1993).
  14. C. H. Hersom and G. G. Shepherd, “Characterization of the wind imaging interferometer,” Appl. Opt. 34, 2871–2879 (1995). [CrossRef]
  15. H. C. Zhu, C. M. Zhang, and X. H. Jian, “A wide field wind image interferometer with chromatic and thermal compensation,” Acta Phys. Sin.893–898 (2010).
  16. Z. C. Bu, C. M. Zhang, B. C. Zhao, and H. C. Zhu, “Analysis and calculation of the modulation depth of the Michelson interferometer with wide field, chromatic compensation and thermal compensation,” Act. Phys. Sinica 58, 2415–2422 (2009).
  17. G. G. Shepherd, W. A. Gault, D. W. Miller, Z. Pasturczyk, S. F. Johnston, P. R. Kosteniuk, J. W. Haslett, D. J. W. Kendall, and J. R. Wimperis, “WAMDII-wide-angle Michelson Doppler imaging interferometer for spacelab,” Appl. Opt. 24, 1571–1584 (1985). [CrossRef]
  18. W. E. Ward, Z. Pasturczyk, W. A. Gault, and G. G. Shepherd, “Multiple reflections in a wide-angle Michelson interferometer,” Appl. Opt. 24, 1589–1598 (1985). [CrossRef]
  19. M. Born and E. Wolf, Principle of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, Seventh (Expanded) ed. (Publishing House of Electronics Industry, 2005), Vol. 1, pp. 34–41.
  20. G. G. Shepherd, “Optical Doppler imaging with field-widened Michelson interferometers,” Surv. Geophys. 9, 185–195 (1987). [CrossRef]
  21. R. J. Bell, Introductory Fourier Transform Spectroscopy(Academic, 1972), pp. 33–41.
  22. Y. Rochon, “The retrieval of winds, Doppler temperatures, and emission rates for the WINDII experiment,” Ph.D. thesis (York University, 2000).
  23. C. M. Zhang and B. C. Zhao, “A new method to measure upper atmospheric wind field with high stability and large field of view,” Acta Opt. Sin. 20, 697–700 (2000).
  24. C. M. Zhang, W. Wang, L. B. Xiang, and B. C. Zhao, “Interference image spectroscopy for upper atmospheric wind field measurement,” Acta Opt. Sin. 20, 234–239 (2000). [CrossRef]
  25. G. W. Stroke, “Photoelectric fringe signal information and range in interferometers with moving mirrors,” J. Opt. Soc. Am. 47, 1097–1103 (1957). [CrossRef]
  26. W. Ward, B. Solheim, and G. Shepherd, “Two day wave induced variations in the oxygen green line volume emission rate: WINDII observations,” Geophys. Res. Lett. 24, 1127–1130 (1997). [CrossRef]
  27. B. L. Xiang, J. F. Yang, G. Zhan, and G. X. Liu, “On the tolerance of the mirror tilting in Fourier transform interferometer,” Act. Photon. Sinica 2, 132–135 (1997).
  28. L. B. Zeng, B. S. Yin, B. He, and D. Gong, “Error analysis of moving mirror in Fourier transform interferometer,” Opt. Precis. Eng. 2, 191–196 (2006).
  29. J. M. Harlander, C. R. Englert, D. D. Babcock, and F. L. Roesler, “Design and laboratory tests of a Doppler asymmetric spatial heterodyne (DASH) interferometer for upper atmospheric wind and temperature observations,” Opt. Express 18, 26430–26440 (2010). [CrossRef]
  30. X. Wan, J. Ge, and Z. Chen, “Development of stable monolithic wide-field Michelson interferometers,” Appl. Opt. 50, 4105–4114 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited