OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 18 — Jun. 20, 2012
  • pp: 4219–4223

Unstable resonator with reduced output coupling

Carsten Pargmann, Thomas Hall, Frank Duschek, Karin Maria Grünewald, and Jürgen Handke  »View Author Affiliations

Applied Optics, Vol. 51, Issue 18, pp. 4219-4223 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (362 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The properties of a laser beam coupled out of a standard unstable laser resonator are heavily dependent on the chosen resonator magnification. A higher magnification results in a higher output coupling and a better beam quality. But in some configurations, an unstable resonator with a low output coupling in combination with a good beam quality is desirable. In order to reduce the output coupling for a particular resonator, magnification fractions of the outcoupled radiation are reflected back into the cavity. In the confocal case, the output mirror consists of a spherical inner section with a high reflectivity and a flat outer section with a partial reflectivity coating. With the application of the unstable resonator with reduced output coupling (URROC), magnification and output coupling can be adjusted independently from each other and it is possible to get a good beam quality and a high power extraction for lasers with a large low gain medium. The feasibility of this resonator design is examined numerically and experimentally with the help of a chemical oxygen iodine laser.

© 2012 Optical Society of America

OCIS Codes
(140.1550) Lasers and laser optics : Chemical lasers
(140.3410) Lasers and laser optics : Laser resonators
(140.4780) Lasers and laser optics : Optical resonators
(230.5750) Optical devices : Resonators

ToC Category:
Lasers and Laser Optics

Original Manuscript: March 21, 2012
Revised Manuscript: May 21, 2012
Manuscript Accepted: May 21, 2012
Published: June 19, 2012

Carsten Pargmann, Thomas Hall, Frank Duschek, Karin Maria Grünewald, and Jürgen Handke, "Unstable resonator with reduced output coupling," Appl. Opt. 51, 4219-4223 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58, 365–372 (1994). [CrossRef]
  2. W. E. McDermott, N. R. Pchelkin, D. J. Benard, and R. R. Bousek, “An electronic transition chemical laser,” Appl. Phys. Lett. 32, 469–470 (1978). [CrossRef]
  3. A. H. Paxton and W. P. Latham, “Unstable resonator with 90° beam rotation,” Appl. Opt. 25, 2939–2945 (1986). [CrossRef]
  4. Y. Jin, B. Yang, F. Sang, D. Zhou, L. Duo, and Q. Zhuang, “Experimental investigation of an unstable ring resonator with 90 deg beam rotation for a chemical oxygen iodine laser,” Appl. Opt. 38, 3249–3252 (1999). [CrossRef]
  5. C. Pargmann, T. Hall, F. Duschek, K. M. Grünewald, and J. Handke, “Hybrid resonator in a double-pass configuration for a chemical oxygen iodine laser,” Appl. Opt. 47, 6644–6649 (2008). [CrossRef]
  6. A. P. Zaikin, “Properties of radiation emitted by an oxygen-iodine chemical laser with an unstable telescopic resonator and an exit mirror with a Gaussian reflectivity profile,” Quantum Electron. 24, 408–410 (1994). [CrossRef]
  7. M. Endo, M. Kawakami, K. Nanri, S. Takeda, and T. Fujioka, “Two-dimensional simulation of an unstable resonator with a stable core,” Appl. Opt. 38, 3298–3307 (1999). [CrossRef]
  8. Y. A. Anan’ev, N. I. Grishmanova, I. M. Petrova, and N. A. Sventsitskaya, “Internal reflecting surfaces in unstable resonators,” Sov. J. Quantum Electron. 5, 1060–1062 (1975). [CrossRef]
  9. Y. A. Anan’ev, D. A. Goryachkin, N. A. Sventsitskaya, and I. M. Petrova, “Investigation of the properties of a laser with an unstable resonator and additional feedback,” Sov. J. Quant. Electron. 9, 1043–1044 (1979). [CrossRef]
  10. P. B. Corkum and H. A. Baldis, “Extra-cavity feedback into unstable resonators,” Appl. Opt. 18, 1346–1349 (1979). [CrossRef]
  11. N. Hodgson and H. Weber, “Unstable resonators with excited converging wave,” IEEE J. Quantum Electron. 26, 731–738 (1990). [CrossRef]
  12. A. H. Paxton and J. H. Erkkila, “Annular converging wave resonator: new insights,” Opt. Lett. 1, 166–168 (1977). [CrossRef]
  13. A. E. Siegman, Lasers (University Science Books, 1986).
  14. R. A. Chodzko, S. B. Mason, and E. F. Cross, “Annular converging wave cavity,” Appl. Opt. 15, 2137–2144 (1976). [CrossRef]
  15. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1968).
  16. A. G. Fox and T. Li, “Resonant modes in a maser interferometer,” Bell Syst. Tech. J. 40, 453–488 (1961).
  17. Y. A. Anan’ev, Laser Resonators and the Beam Divergence Problem (Adam Hilger, 1992).
  18. J. Handke, K. Grünewald, and W. O. Schall, “Power extraction investigations for a 10 kW-class supersonic COIL,” Proc. SPIE 3574, 309–314 (1998). [CrossRef]
  19. K. M. Grünewald, J. Handke, and F. Duschek, “Small signal gain and temperature profiles in supersonic COIL,” Proc. SPIE 4184, 75–78 (2000). [CrossRef]
  20. W. Rigrod, “Homogeneously broadened cw lasers with uniform distributed loss,” IEEE J. Quantum Electron. 14, 377–381 (1978). [CrossRef]
  21. C. Pargmann, T. Hall, F. Duschek, K. M. Grünewald, and J. Handke, “Off-axis negative branch unstable resonator in rectangular geometry,” Appl. Opt. 50, 11–16 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited