OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 19 — Jul. 1, 2012
  • pp: 4308–4315

Linear variable optical filter-based ultraviolet microspectrometer

Arvin Emadi, Huaiwen Wu, Ger de Graaf, Peter Enoksson, Jose Higino Correia, and Reinoud Wolffenbuttel  »View Author Affiliations


Applied Optics, Vol. 51, Issue 19, pp. 4308-4315 (2012)
http://dx.doi.org/10.1364/AO.51.004308


View Full Text Article

Enhanced HTML    Acrobat PDF (1340 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An IC-compatible linear variable optical filter (LVOF) for application in the UV spectral range between 310 and 400 nm has been fabricated using resist reflow and an optimized dry-etching. The LVOF is mounted on the top of a commercially available CMOS camera to result in a UV microspectrometer. A special calibration technique has been employed that is based on an initial spectral measurement on a xenon lamp. The image recorded on the camera during calibration is used in a signal processing algorithm to reconstruct the spectrum of the mercury lamp and the calibration data is subsequently used in UV spectral measurements. Experiments on a fabricated LVOF-based microspectrometer with this calibration approach implemented reveal a spectral resolution of 0.5 nm.

© 2012 Optical Society of America

OCIS Codes
(220.0220) Optical design and fabrication : Optical design and fabrication
(300.6190) Spectroscopy : Spectrometers
(300.6540) Spectroscopy : Spectroscopy, ultraviolet
(310.4165) Thin films : Multilayer design

ToC Category:
Spectroscopy

History
Original Manuscript: December 13, 2011
Revised Manuscript: May 7, 2012
Manuscript Accepted: May 17, 2012
Published: June 22, 2012

Citation
Arvin Emadi, Huaiwen Wu, Ger de Graaf, Peter Enoksson, Jose Higino Correia, and Reinoud Wolffenbuttel, "Linear variable optical filter-based ultraviolet microspectrometer," Appl. Opt. 51, 4308-4315 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-19-4308


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Villarisu, M. Fresta, N. Micali, and G. Puglisi, “Potential application of UV reflection spectroscopy on solid pharmaceutical formulation analysis,” Int. J. Pharm. 127, 185–189 (1996). [CrossRef]
  2. A. J. Merer, “Spectroscopy of the diatomic 3d transition metal oxides,” Annu. Rev. Phys. Chem. 40, 407–438 (1989). [CrossRef]
  3. F. Z. Chen, D. L. Judge, C. Y. R. Wu, and J. Caldwell, “Low and room temperature photoabsorption cross sections of NH3 in the UV region,” Planet. Space Sci. 47, 261–266 (1998). [CrossRef]
  4. A. Rodger and K. Sanders, “Biomacromolecular applications of UV-visible absorption spectroscopy,” in Encyclopedia of Spectroscopy and Spectrometry, J. Lindon, ed. (Oxford, 1999), pp. 130–139.
  5. R. F. Wolffenbuttel, “MEMS-based optical mini and microspectrometers for the visible and infrared spectral range,” J. Micromech. Microeng. 15, S145–S152. [CrossRef]
  6. G. Minas, R. F. Wolffenbuttel, and J. H. Correia, “A lab-on-a-chip for spectrophotometric analysis of biological fluids,” Lab Chip 5, 1303–1309 (2005). [CrossRef]
  7. L. Mol, L. A. Rocha, E. Cretu, and R. F. Wolffenbuttel, “Squeezed film damping measurements on a parallel-plate MEMS in the free molecule regime,” J. Micromech. Microeng. 19, 074021 (2009). [CrossRef]
  8. J. H. Correia, A. Emadi, and R. F. Wolffenbuttel, “UV bandpass optical filter for microspectrometers,” ECS Trans. 4, 141–147 (2007). [CrossRef]
  9. O. Schmidt, P. Kiesel, and M. Bassler, “Performance of chip-size wavelength detectors,” Opt. Express 15, 9701–9706 (2007). [CrossRef]
  10. A. Emadi, H. Wu, G. De Graaf, and R. F. Wolffenbuttel, “Design and implementation of a sub-nm resolution microspectrometer based on a linear-variable optical filter,” Opt. Express 20, 489–507 (2012). [CrossRef]
  11. A. Emadi, H. Wu, G. de Graaf, K. Hedsten, P. Enoksson, J. H. Correia, and R. F. Wolffenbuttel, “An UV linear variable optical filter-based micro-spectrometer,” Procedia Eng. 5, 416–419 (2010). [CrossRef]
  12. R. McLeod and T. Honda, “Improving the spectral resolution of wedged etalons and linear variable filters with incidence angle,” Opt. Lett. 30, 2647–2649 (2005). [CrossRef]
  13. R. Thielsch, A. Gatto, J. Heber, and N. Kaiser, “A comparative study of the UV optical and structural properties of SiO2, Al2O3, and HfO2 single layers deposited by reactive evaporation, ion-assisted deposition and plasma ion-assisted deposition,” Thin Sol. Films 40, 86–93 (2002). [CrossRef]
  14. H. G. Tompkins and E. A. Irene, Handbook of Ellipsometry (William Andrew Publishing, 2005).
  15. TFCalc thin film design software website, http://www.sspectra.com/ .
  16. J. H. Apfel, “Phase retardance of periodic multilayer mirrors,” Appl. Opt. 21, 733–738 (1982). [CrossRef]
  17. D. I. Babic and S. W. Corzine, “Analytic expressions for the reflection delay, penetration depth, and absorptance of quarter-wave dielectric mirrors,” IEEE J. Quantum Electron. 28, 514–524 (1992). [CrossRef]
  18. A. Emadi, “Linear-variable optical filters for microspectrometer application,” Ph.D. thesis (Technical University of Delft, 2010).
  19. A. Emadi, H. Wu, S. Grabarnik, G. de Graaf, and R. F. Wolffenbuttel, “Vertically tapered layers for optical applications fabricated using resist reflow,” J. Micromech. Microeng. 19, 074014 (2009). [CrossRef]
  20. K. Mohamed and M. M. Alkaisi, “Three-dimensional pattern transfer on quartz substrates,” Microelectron. Eng. 87, 1463–1466 (2010). [CrossRef]
  21. J. R. Blanco, P. J. McMarr, and K. Vedam, “Roughness measurements by spectroscopic ellipsometry,” Appl. Opt. 24, 3773–3779 (1985). [CrossRef]
  22. S. F. Nee, “Ellipsometric analysis for surface roughness and texture,” Appl. Opt. 27, 2819–2831 (1988). [CrossRef]
  23. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th ed. (Cambridge University, 1999).
  24. D. Massicotte, R. Z. Morawski, and A. Barwicz, “Kalman-filter-based algorithms of spectrometric data correction-Part I: an iterative algorithm of deconvolution, instrumentation and measurement,” IEEE Trans. Instrum. Meas. 46, 678–684(1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited