OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 19 — Jul. 1, 2012
  • pp: 4448–4456

Optical performance of symmetrical and asymmetrical Y-branch couplers for plastic optical fibers

Jao-Hwa Kuang, Pao-Chuan Chen, and Yung-Chuan Chen  »View Author Affiliations


Applied Optics, Vol. 51, Issue 19, pp. 4448-4456 (2012)
http://dx.doi.org/10.1364/AO.51.004448


View Full Text Article

Enhanced HTML    Acrobat PDF (584 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The excess loss and output optical power ratio of symmetrical and asymmetrical Y-branch couplers for plastic optical fibers (POFs) are studied in this work. A ray-tracing model for the Y-branch coupler is derived to investigate the effect of coupling parameters on its optical performance. The coupling parameters, namely coupling angle, axial displacement, and refractive index of filling medium between the emitting-end and receiving-end POFs, are studied. The simulated and measured results indicate that the coupling efficiency is sensitive to all these coupling parameters. A minimum excess loss of approximately 0.83 dB is observed for the symmetrical Y-branch coupler. It is found that both the excess loss and the output power ratio are increased with the increase of the refractive index of the filling medium and the total coupling angle (α+β) for the asymmetrical Y-branch coupler. The experimental results indicate that the maximum output power ratio P1P2 is found to be 3.81 for excess loss of less than 2.8 dB for the asymmetrical Y-branch coupler.

© 2012 Optical Society of America

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(060.1810) Fiber optics and optical communications : Buffers, couplers, routers, switches, and multiplexers
(080.0080) Geometric optics : Geometric optics
(080.1753) Geometric optics : Computation methods

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: February 3, 2012
Revised Manuscript: April 2, 2012
Manuscript Accepted: April 23, 2012
Published: June 28, 2012

Citation
Jao-Hwa Kuang, Pao-Chuan Chen, and Yung-Chuan Chen, "Optical performance of symmetrical and asymmetrical Y-branch couplers for plastic optical fibers," Appl. Opt. 51, 4448-4456 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-19-4448


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Mizuno, S. Jordan, O. Sugihara, T. Kaino, N. Okamoto, and M. Ohama, “Polymeric optical waveguide with plastic optical fiber guides for passive alignment fabricated by hot embossing,” Jpn. J. Appl. Phys. 43, L1496–L1498 (2004). [CrossRef]
  2. H. Mizuno, O. Sugihara, T. Kaino, N. Okamoto, and M. Ohama, “Compact Y-branch-type polymeric optical waveguide devices with large-core connectable to plastic optical fibers,” Jpn. J. Appl. Phys. 44, 8504–8506 (2005). [CrossRef]
  3. J. Kruszewski, M. Borecki, and M. Beblowska, “Designing and performance of the asymmetrical coupler of plastic optical fibers,” Proc. SPIE 5576, 228–233 (2004). [CrossRef]
  4. H. Mizuno, O. Sugihara, S. Jordan, N. Okamoto, M. Ohama, and T. Kaino, “Replicated polymeric optical waveguide devices with large core connectable to plastic optical fiber using thermo-plastic and thermo-curable resins,” J. Lightwave Technol. 24, 919–926 (2006). [CrossRef]
  5. C.-G. Choi, S.-P. Han, B. C. Kim, S.-H. Ahn, and M.-Y. Jeong, “Fabrication of large-core 1×16 optical power splitters in polymers using hot-embossing process,” IEEE Photon. Technol. Lett. 15, 825–827 (2003). [CrossRef]
  6. M. Kagami, K. Hasegawa, and H. Ito, “Simultaneous fabrication of optical channel waveguides and out-of-plane branching mirrors from a polymeric slab structure,” Appl. Opt. 36, 7700–7707 (1997). [CrossRef]
  7. J. Kobayashi, T. Matsuura, Y. Hida, S. Sasaki, and T. Maruno, “Fluorinated polyimide waveguides with low polarization-dependent loss and their applications to thermooptic switches,” J. Lightwave Technol. 16, 1024–1029 (1998). [CrossRef]
  8. K. Enbutsu, M. Hikita, R. Yoshimura, S. Tomaru, and S. Imamura, “Multimode polymeric optical waveguides with high thermal stability using UV cured epoxy resins,” Jpn. J. Appl. Phys. 37, 3662–3664 (1998). [CrossRef]
  9. O. S. Rösch, W. Bernhard, T. M. Fiedler, P. Dannberg, A. Bräuer, R. Buestrich, and M. Popall, “High performance low cost fabrication method for integrated polymer optical devices,” Proc. SPIE 3799, 214–224 (1999). [CrossRef]
  10. J.-S. Kim, J.-W. Kang, and J. J. Kim, “Simple and low cost fabrication of thermally stable polymeric multimode waveguides using a UV-curable epoxy,” Jpn. J. Appl. Phys. 42, 1277–1279 (2003). [CrossRef]
  11. Y. Y. Maruo, S. Sasaki, and T. Tamamura, “Channel-optical-waveguide fabrication based on electron-beam irradiation of polyimides,” Appl. Opt. 34, 1047–1052 (1995). [CrossRef]
  12. M. Kagami, T. Yamashita, and H. Ito, “Light-induced self-written three-dimensional optical waveguide,” Appl. Phys. Lett. 79, 1079–1081 (2001). [CrossRef]
  13. D. Fischer and E. Voges, “Multimode polymeric waveguide devices fabricated by two-component injection molding,” Electron. Lett. 33, 1626–1627 (1997). [CrossRef]
  14. Y. Takezawa, S. Akasaka, S. Ohara, T. Ishibashi, H. Asano, and N. Taketani, “Low excess losses in a Y-branching plastic optical waveguide formed through injection molding,” Appl. Opt. 33, 2307–2312 (1994). [CrossRef]
  15. T. Klotzbuecher, T. Braune, D. Dadic, M. Sprzagala, and A. Koch, “Fabrication of optical 1×2 POF couplers using the laser-LIGA technique,” Proc. SPIE 4941, 121–132 (2003). [CrossRef]
  16. A. W. Snyder and J. D. Love, Optical Waveguide Theory(Chapman and Hall, 1983).
  17. G. Aldabaldetreku, G. Durana, J. Zubia, J. Arrue, and F. Jiménez, “Analysis of intrinsic coupling loss in multi-step index optical fibers,” Opt. Express 13, 3283–3295 (2005). [CrossRef]
  18. J. Zubia, U. Irusta, A. Aguire, and J. Arrue, “Design and measurement of POF active couplers,” in Proceedings of IEEE Lasers and Electro-Optics Society Annual Meeting, 1997 (LEOS) (IEEE, 1997), pp. 48–49.
  19. J. Zubia, U. Irusta, J. Arrue, and A. Aguire, “Design and characterization of a plastic optical fiber active coupler,” IEEE Photon. Technol. Lett. 10, 1578–1580 (1998). [CrossRef]
  20. J. Zubia, G. Durana, J. Arrue, and I. Garcis, “Design and performance of active coupler for plastic optical fibres,” Electron. Lett. 38, 65–67 (2002). [CrossRef]
  21. G. Aldabaldetreku, G. Durana, J. Zubia, J. Arrue, H. Poisel, and M. A. Losada, “Investigation and comparison of analytical, numerical, and experimentally measured coupling losses for multi-step index optical fibers,” Opt. Express 13, 4012–4036 (2005). [CrossRef]
  22. G. Durana, J. Zubia, J. Arrue, G. Aldabaldetreku, and J. Mateo, “Dependence of bending losses on cladding thickness in plastic optical fibers,” Appl. Opt. 42, 997–1002 (2003). [CrossRef]
  23. Y. C. Chen, L. W. Chen, and P. C. Chen, “The combined effect of bend and elongation on polymer optical fiber losses,” Opt. Lett. 30, 230–232 (2005). [CrossRef]
  24. W. Daum, J. Krauser, P. E. Zamzow, and O. Ziemann, POF—Polymer Optical Fibers for Data Communication (Springer, 2002).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited