OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 19 — Jul. 1, 2012
  • pp: 4536–4541

Miniature all-fiber Fabry–Perot sensor for simultaneous measurement of pressure and temperature

Simon Pevec and Denis Donlagic  »View Author Affiliations

Applied Optics, Vol. 51, Issue 19, pp. 4536-4541 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (629 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This article presents a miniature, high-sensitivity, all-silica Fabry–Perot fiber-optic sensor suitable for simultaneous measurements of pressure and temperature. The proposed sensor diameter does not exceed 125 μm and consists of two low-finesse Fabry–Perot resonators created at the tip of an optical fiber. The first resonator is embodied in the form of a short air cavity positioned at the tip of the fiber. This resonator utilizes a thin silica diaphragm to achieve the sensor’s pressure response. The second resonator exploits the refractive index dependence of silica fiber in order to provide the proposed sensor’s temperature measurement function. Both resonators have substantially different lengths that permit straightforward spectrally resolved signal processing and unambiguous determination of the applied pressure and temperature.

© 2012 Optical Society of America

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(120.2230) Instrumentation, measurement, and metrology : Fabry-Perot

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: April 5, 2012
Manuscript Accepted: May 11, 2012
Published: June 29, 2012

Simon Pevec and Denis Donlagic, "Miniature all-fiber Fabry–Perot sensor for simultaneous measurement of pressure and temperature," Appl. Opt. 51, 4536-4541 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Z. Wang, A. B. Wang, K. A. Murphy, and A. M. Vengsarkar, “Two-mode Fabry-Perot optical fibre sensors for strain and temperature,” Electron. Lett. 27, 1843–1845 (1991). [CrossRef]
  2. Y. G. Han, S. Song, G. H. Kim, K. Lee, S. B. Lee, J. H. Lee, C. H. Jeong, C. H. Oh, and H. J. Kang, “Simultaneous independent measurement of strain and temperature based on long-period fiber gratings inscribed in holey fibers depending on air-hole size,” Opt. Lett. 32, 2245–2247 (2007). [CrossRef]
  3. Y. J. Rao, Z. L. Ran, X. Liao, and H. Y. Deng, “Hybrid LPFG/MEFPI sensor for simultaneous measurement of high-temperature and strain,” Opt. Express 15, 14936–14941 (2007). [CrossRef]
  4. J. Xu, Y.-g. Liu, Z. Wang, and B. Tai, “Simultaneous force and temperature measurement using long-period grating written on the joint of a microstructured optical fiber and a single mode fiber,” Appl. Opt. 49, 492–496 (2010). [CrossRef]
  5. B. Dong, J. Hao, C. Liaw, B. Lin, and S. C. Tjin, “Simultaneous strain and temperature measurement using a compact photonic crystal fiber inter-modal interferometer and a fiber Bragg grating,” Appl. Opt. 49, 6232–6235 (2010). [CrossRef]
  6. H. Y. Choi, G. Mudhana, K. S. Park, U. C. Paek, and B. H. Lee, “Cross-talk free and ultra-compact fiber optic sensor for simultaneous measurement of temperature and refractive index,” Opt. Express 18, 141–149 (2010). [CrossRef]
  7. A. P. Zhang, L. Y. Shao, J. F. Ding, and S. He, “Sandwiched long-period gratings for simultaneous measurement of refractive index and temperature,” IEEE Photon. Technol. Lett. 17, 2397–2399 (2005). [CrossRef]
  8. D. W. Kim, F. Shen, X. Chen, and A. Wang, “Simultaneous measurement of refractive index and temperature based on a reflection-mode long-period grating and an intrinsic Fabry–Perot interferometer sensor,” Opt. Lett. 30, 3000–3002 (2005). [CrossRef]
  9. Y. J. Rao, M. Deng, D. W. Duan, and T. Zhu, “In-line fiber Fabry–Perot refractive-index tip sensor based on endlessly photonic crystal fiber,” Sens. Actuators A 148, 33–38 (2008). [CrossRef]
  10. L. A. Ferreira, A. B. L. Ribeiro, J. L. Santos, and F. Farahi, “Simultaneous measurement of displacement and temperature using a low finesse cavity and a fiber Bragg grating,” IEEE Photon. Technol. Lett. 8, 1519–1521 (1996). [CrossRef]
  11. C.-W. Lai, Y.-L. Lo, J.-P. Yur, W.-F. Liu, and C.-H. Chuang, “Application of Fabry-Pérot and fiber Bragg grating pressure sensors to simultaneous measurement of liquid level and specific gravity,” Measurement 45, 469–473 (2012). [CrossRef]
  12. Y. Liu, Z. Guo, Y. Zhang, K. S. Chiang, and X. Dong, “Simultaneous pressure and temperature measurement with polymer-coated fibre Bragg grating,” Electron. Lett. 36, 564–566 (2000). [CrossRef]
  13. T. Guo, X. Qiao, Z. Jia, Q. Zhao, and X. Dong, “Simultaneous measurement of temperature and pressure by a single fiber Bragg grating with a broadened reflection spectrum,” Appl. Opt. 45, 2935–2939 (2006). [CrossRef]
  14. K. Bremer, E. Lewis, G. Leen, and B. Moss, “Fibre optic pressure and temperature sensor for geothermal wells,” in Proceedings of IEEE Sensors 2010 Conference (IEEE, 2010), pp. 538–541.
  15. K. Bremer, E. Lewis, G. Leen, B. Moss, S. Lochmann, and I. A. R. Mueller, “Feedback stabilized interrogation technique for EFPI/FBG hybrid fiber-optic pressure and temperature sensors,” IEEE Sens. J. 12, 133–138 (2012). [CrossRef]
  16. J. A. Etches and G. F. Fernando, “Evaluation of embedded optical fiber sensors in composites: EFPI sensor fabrication and quasi-static evaluation,” Polym. Compos. 30, 1265–1274 (2009). [CrossRef]
  17. E. Cibula and D. Đonlagić, “Low-loss semi-reflective in-fiber mirrors,“ Opt. Express 18, 12017–12026 (2010). [CrossRef]
  18. E. Cibula and D. Đonlagić, “Miniature fiber-optic pressure sensor with a polymer diaphragm,” Appl. Opt. 44, 2736–2744 (2005). [CrossRef]
  19. E. Cibula, S. Pevec, B. Lenardič, E. Pinet, and D. Đonlagić, “Miniature all-glass robust pressure sensor,“ Opt. Express 17, 5098–5106 (2009). [CrossRef]
  20. D. Đonlagić and E. Cibula, “All-fiber high-sensitivity pressure sensor with SiO2 diaphragm,” Opt. Lett. 30, 2071–2073 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited