OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 19 — Jul. 1, 2012
  • pp: 4547–4553

All-fiber spectral compression of picosecond pulses at telecommunication wavelength enhanced by amplitude shaping

J. Fatome, B. Kibler, E. R. Andresen, H. Rigneault, and C. Finot  »View Author Affiliations


Applied Optics, Vol. 51, Issue 19, pp. 4547-4553 (2012)
http://dx.doi.org/10.1364/AO.51.004547


View Full Text Article

Enhanced HTML    Acrobat PDF (635 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate efficient spectral compression of picosecond pulses in an all-fiber configuration at telecommunication wavelengths. A spectral compression by a factor of 12 is achieved. Performing temporal shaping with a parabolic pulse significantly improves the spectral compression with much lower substructures and an enhanced Strehl ratio.

© 2012 Optical Society of America

OCIS Codes
(070.4340) Fourier optics and signal processing : Nonlinear optical signal processing
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(320.5540) Ultrafast optics : Pulse shaping

ToC Category:
Ultrafast Optics

History
Original Manuscript: November 23, 2011
Manuscript Accepted: May 12, 2012
Published: June 29, 2012

Citation
J. Fatome, B. Kibler, E. R. Andresen, H. Rigneault, and C. Finot, "All-fiber spectral compression of picosecond pulses at telecommunication wavelength enhanced by amplitude shaping," Appl. Opt. 51, 4547-4553 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-19-4547


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. H. Stolen and C. Lin, “Self-phase modulation in silica optical fibers,” Phys. Rev. A 17, 1448–1453 (1978). [CrossRef]
  2. Z. Yousoff, P. Petropoulos, F. Furusawa, T. M. Monro, and D. J. Richardson, “A 36-channel×10  GHz spectrally sliced pulse source based on supercontinuum generation in normally dispersive highly nonlinear holey fiber,” IEEE Photon. Technol. Lett. 15, 1689–1691 (2003). [CrossRef]
  3. W. J. Tomlinson, R. H. Stolen, and C. V. Shank, “Compression of optical pulses chirped by self-phase modulation in fibers,” J Opt. Soc. Am. B 1, 139–149 (1984). [CrossRef]
  4. F. Parmigiani, C. Finot, K. Mukasa, M. Ibsen, M. A. F. Roelens, P. Petropoulos, and D. J. Richardson, “Ultra-flat SPM-broadened spectra in a highly nonlinear fiber using parabolic pulses formed in a fiber Bragg grating,” Opt. Express 14, 7617–7622 (2006). [CrossRef]
  5. A. M. Clarke, D. G. Williams, M. A. F. Roelens, and B. J. Eggleton, “Reconfigurable optical pulse generator employing a Fourier-Domain programmable optical processor,” J. Lightwave Technol. 28, 97–103 (2010). [CrossRef]
  6. D. N. Schimpf, J. Limpert, and A. Tünnermann, “Controllong the influence of SPM in fiber-based chirped-pulse amplification systems by using an actively shaped parabolic spectrum,” Opt. Express 15, 16945–16953 (2007). [CrossRef]
  7. C. Finot, J. M. Dudley, B. Kibler, D. J. Richardson, and G. Millot, “Optical parabolic pulse generation and applications,” IEEE J. Quantum Electron. 45, 1482–1489 (2009). [CrossRef]
  8. N. L. Markaryan, L. K. Muradyan, and T. A. Papazyan, “Spectral compression of ultrashort laser pulses,” Kvantovaya Elektron. 18, 865–867 (1991).
  9. S. A. Planas, N. L. Pires Mansur, C. H. Brito Cruz, and H. L. Fragnito, “Spectral narrowing in the propagation of chirped pulses in single-mode fibers,” Opt. Lett. 18, 699–701 (1993). [CrossRef]
  10. M. Oberthaler and R. A. Höpfel, “Spectral narrowing of ultrashort laser pulses by self-phase modulation in optical fibers,” Appl. Phys. Lett. 63, 1017–1019 (1993). [CrossRef]
  11. E. R. Andresen, J. Thogersen, and S. R. Keiding, “Spectral compression of femtosecond pulses in photonic crystal fibers,” Opt. Lett. 30, 2025–2027 (2005). [CrossRef]
  12. J. P. Limpert, T. Gabler, A. Liem, H. Zellmer, and A. Tünnermann, “SPM-induced spectral compression of picosecond pulses in a single-mode Yb-doped fiber amplifier,” Appl. Phys. B 74, 191–195 (2002). [CrossRef]
  13. E. R. Andresen, V. Birkedal, J. Thogersen, and S. R. Keiding, “Tunable light source for coherent anti-Stockes Raman scattering microspectroscopy based on the soliton self-frequency shift,” Opt. Lett. 31, 1328–1330 (2006). [CrossRef]
  14. C. Finot, A. Guenot, and P. Dupriez, “Spectral compression of optical parabolic similaritons,” Ann. Phys. France 32, 71–74 (2007). [CrossRef]
  15. C. Finot, F. Parmigiani, P. Petropoulos, and D. J. Richardson, “Parabolic pulse evolution in normally dispersive fiber amplifiers preceding the similariton formation regime,” Opt. Express 14, 3161–3170 (2006). [CrossRef]
  16. E. R. Andresen, J. M. Dudley, C. Finot, D. Oron, and H. Rigneault, “Transform-limited spectral compression by self-phase modulation of amplitude shaped pulses with negative chirp,” Opt. Lett. 36, 707–709 (2011). [CrossRef]
  17. M. Rusu and O. G. Okhotnikov, “All-fiber picosecond laser source based on nonlinear spectral compression,” Appl. Phys. Lett. 89, 091118 (2006). [CrossRef]
  18. T. Hirooka, M. Nakazawa, and K. Okamoto, “Bright and dark 40 GHz parabolic pulse generation using a picosecond optical pulse train and an arrayed waveguide grating,” Opt. Lett. 33, 1102–1104 (2008). [CrossRef]
  19. Y. Zaouter, D. N. Papadopoulos, M. Hanna, F. Druon, E. Cormier, and P. Georges, “Third-order spectral phase compensation in parabolic pulse compression,” Opt. Express 15, 9372–9377 (2007). [CrossRef]
  20. D. Anderson and M. Lisak, “Analytic study of pulse broadening in dispersive optical fibers,” Phys. Rev. A 35, 184–187 (1987). [CrossRef]
  21. A. A. Kutuzyan, T. G. Mansuryan, G. L. Esayan, R. S. Akopyan, and A. Muradyan, “Dispersive regime of spectral compression,” Quantum Electron. 38, 383 (2008). [CrossRef]
  22. R. G. Smith, “Optical power handling capacity of low loss optical fibers as determined by stimulated Raman and Brillouin scattering,” Appl. Opt. 11, 2489–2494 (1972). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited