OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 20 — Jul. 10, 2012
  • pp: 4684–4690

Approaching ultimate resolution for soft x-ray spectrometers

Sorin G. Chiuzbăian, Coryn F. Hague, and Jan Lüning  »View Author Affiliations

Applied Optics, Vol. 51, Issue 20, pp. 4684-4690 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (454 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We explore the potential performance of soft x-ray spectrometers based on the use of varied-line-spacing spherical diffraction gratings (VLS-SG). The quantitative assessment is based on an optimization procedure to obtain both negligible optical aberrations at full illumination of the grating and a quasi linear focal curve. It involves high-order optical aberration cancellation to calculate the focal curves. We also examine the validity of small divergence closed-form formulas describing the light path function. Optimizing the optical and geometric parameters gives an ultimate resolving power, at 930 eV, of between 10 800 for a 3 m long instrument and 34 000 for an 11 m spectrometer according to the Rayleigh criterion. Typical fabrication tolerances would scale these values down by about 10%. The findings are validated by ray-tracing simulations.

© 2012 Optical Society of America

OCIS Codes
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation
(300.6190) Spectroscopy : Spectrometers

ToC Category:

Original Manuscript: April 9, 2012
Manuscript Accepted: May 9, 2012
Published: July 3, 2012

Sorin G. Chiuzbăian, Coryn F. Hague, and Jan Lüning, "Approaching ultimate resolution for soft x-ray spectrometers," Appl. Opt. 51, 4684-4690 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Nordgren, H. Agren, L. Pettersson, L. Selander, S. Griep, C. Nordling, and K. Siegbahn, “A new 10 m grazing incidence instrument for molecular X-ray studies,” Physica Scripta 20, 623–626 (1979). [CrossRef]
  2. J. Nordgren and R. Nyholm, “Design of a portable large spectral range grazing incidence instrument,” Nucl. Instrum. Methods Phys. Res. A 246, 242–245 (1986). [CrossRef]
  3. T. A. Callcott, K. L. Tsang, C. H. Zhang, D. L. Ederer, and E. T. Arakawa, “High-efficiency soft x-ray emission spectrometer for use with synchrotron radiation excitation,” Rev. Sci. Instrum. 57, 2680–2690 (1986). [CrossRef]
  4. S. Shin, A. Agui, M. Fujisawa, Y. Tezuka, and T. Ishii, “Soft x-ray emission spectrometer for undulator radiation,” Rev. Sci. Instrum. 66, 1584–1586 (1995). [CrossRef]
  5. K. D. Osborn and T. A. Callcott, “Two new optical designs for soft x-ray spectrometers using variable-line-space gratings,” Rev. Sci. Instrum. 66, 3131–3136 (1995). [CrossRef]
  6. C. Dallera, E. Puppin, A. Fasana, G. Trezzi, N. Incorvaia, L. Braicovich, N. B. Brookes, and J. B. Goedkoop, “Soft x-ray emission spectroscopy at ESRF beamline 26 based on a helical undulator,” J. Synchrotron Radiat. 3, 231–238 (1996). [CrossRef]
  7. D. Cocco, M. Matteucci, K. C. Prince, and M. Zangrando, “ComIXS: a compact inelastic x-ray spectrometer,” Proc. SPIE 4506, 46–227(2001). [CrossRef]
  8. C. F. Hague, J. H. Underwood, A. Avila, R. Delaunay, H. Ringuenet, M. Marsi, and M. Sacchi, “Plane-grating flat-field soft x-ray spectrometer,” Rev. Sci. Instrum. 76, 023110 (2005). [CrossRef]
  9. Y. Chuang, J. Pepper, W. McKinney, Z. Hussain, E. Gullikson, P. Batson, D. Qian, and M. Z. Hasan, “High-resolution soft X-ray emission spectrograph at advanced light source,” J. Phys. Chem. Solids 66, 2173–2178 (2005). [CrossRef]
  10. T. Tokushima, Y. Harada, H. Ohashi, Y. Senba, and S. Shin, “High performance slit-less spectrometer for soft x-ray emission spectroscopy,” Rev. Sci. Instrum. 77, 063107 (2006). [CrossRef]
  11. G. Ghiringhelli, A. Piazzalunga, C. Dallera, G. Trezzi, L. Braicovich, T. Schmitt, V. N. Strocov, R. Betemps, L. Patthey, X. Wang, and M. Grioni, “SAXES, a high resolution spectrometer for resonant x-ray emission in the 400–1600 eV energy range,” Rev. Sci. Instrum. 77, 113108 (2006). [CrossRef]
  12. Y. Harada, M. Kobayashi, H. Niwa, Y. Senba, H. Ohashi, T. Tokushima, Y. Horikawa, S. Shin, and M. Oshima, “Ultrahigh resolution soft x-ray emission spectrometer at BL07LSU in SPring-8,” Rev. Sci. Instrum. 83, 013116 (2012). [CrossRef]
  13. L. J. P. Ament, M. van Veenendaal, T. P. Devereaux, J. P. Hill, and J. van den Brink, “Resonant inelastic x-ray scattering studies of elementary excitations,” Rev. Mod. Phys. 83, 705–767 (2011). [CrossRef]
  14. H. Noda, T. Tamioka, and N. Seya, “Geometric theory of the grating,” J. Opt. Soc. Am. 64, 1031–1036 (1974). [CrossRef]
  15. M. R. Howells, “Gratings and monochromators,” in X-ray Data Booklet (Lawrence Berkeley National Laboratory, 2001), pp. 4–17.
  16. H. A. Rowland, “On concave gratings for optical purposes,” Philos. Mag. 16, 197–210 (1883).
  17. M. C. Hettrick and J. H. Underwood, “Optical system for high resolution spectrometer/monochromator,” U.S. patent 4,776,696 (1988).
  18. J. H. Underwood and J. A. Koch, “High-resolution tunable spectrograph for x-ray laser linewidth measurements with a plane varied-line-spacing grating,” Appl. Opt. 36, 4913–4921 (1997). [CrossRef]
  19. H. Tsunemi, K. Mori, E. Miyata, C. Baluta, D. N. Burrows, G. P. Garmire, and G. Chartas, “Improvement of the spatial resolution of the ACIS using split-pixel events,” Astrophys. J. 554, 496–504 (2001). [CrossRef]
  20. M. Koike and T. Namioka, “Merit function for the design of grating instruments,” Appl. Opt. 33, 2028–2056 (1994).
  21. T. Harada, K. Takahashi, H. Sakuma, and A. Osyczka, “Optimum design of a grazing-incidence flat-field spectrograph with a spherical varied-line-space grating,” Appl. Opt. 38, 2743–2748 (1999). [CrossRef]
  22. V. N. Strocov, T. Schmitt, U. Flechsig, L. Patthey, and G. S. Chiuzbăian, “Numerical optimization of spherical variable-line-spacing grating X-ray spectrometers,” J. Synchrotron Radiat. 18, 134–142 (2011). [CrossRef]
  23. W. B. Peatman, Gratings, Mirrors and Slits (Gordon and Breach Science, 1997).
  24. B. Lai and F. Cerrina, “SHADOW: a synchrotron radiation ray tracing program,” Nucl. Instrum. Methods Phys. Res. A 246, 337–341 (1986). [CrossRef]
  25. M. Sánchez del Río and R. J. Dejus, “Status of XOP: an x-ray optics software toolkit,” Proc. SPIE 5536, 171–174(2004). [CrossRef]
  26. M. Sánchez del Río and A. Marcelli, “Waviness effects in ray-tracing of “real” optical surfaces,” Nucl. Instrum. Methods Phys. Res. A 319, 170–177 (1992). [CrossRef]
  27. M. Thomasset, Synchrotron Soleil, France (personal communication, 2012).
  28. T. Namioka, “Diffraction gratings,” in Experimental Methods in the Physical Sciences Vol. 31, J. A. R. Samson and D. L. Ederer, eds. (Academic, 1998), pp. 347–377.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited