OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 20 — Jul. 10, 2012
  • pp: 4858–4866

Automated detection of exudates in colored retinal images for diagnosis of diabetic retinopathy

M. Usman Akram, Anam Tariq, M. Almas Anjum, and M. Younus Javed  »View Author Affiliations


Applied Optics, Vol. 51, Issue 20, pp. 4858-4866 (2012)
http://dx.doi.org/10.1364/AO.51.004858


View Full Text Article

Enhanced HTML    Acrobat PDF (635 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Medical image analysis is a very popular research area these days in which digital images are analyzed for the diagnosis and screening of different medical problems. Diabetic retinopathy (DR) is an eye disease caused by the increase of insulin in blood and may cause blindness. An automated system for early detection of DR can save a patient’s vision and can also help the ophthalmologists in screening of DR. The background or nonproliferative DR contains four types of lesions, i.e., microaneurysms, hemorrhages, hard exudates, and soft exudates. This paper presents a method for detection and classification of exudates in colored retinal images. We present a novel technique that uses filter banks to extract the candidate regions for possible exudates. It eliminates the spurious exudate regions by removing the optic disc region. Then it applies a Bayesian classifier as a combination of Gaussian functions to detect exudate and nonexudate regions. The proposed system is evaluated and tested on publicly available retinal image databases using performance parameters such as sensitivity, specificity, and accuracy. We further compare our system with already proposed and published methods to show the validity of the proposed system.

© 2012 Optical Society of America

OCIS Codes
(100.0100) Image processing : Image processing
(100.2960) Image processing : Image analysis
(100.2980) Image processing : Image enhancement
(100.5010) Image processing : Pattern recognition

ToC Category:
Imaging Systems

History
Original Manuscript: February 14, 2012
Revised Manuscript: May 17, 2012
Manuscript Accepted: May 20, 2012
Published: July 9, 2012

Virtual Issues
Vol. 7, Iss. 9 Virtual Journal for Biomedical Optics

Citation
M. Usman Akram, Anam Tariq, M. Almas Anjum, and M. Younus Javed, "Automated detection of exudates in colored retinal images for diagnosis of diabetic retinopathy," Appl. Opt. 51, 4858-4866 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-20-4858


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. M. Kohner, S. J. Aldington, I. M. Stratton, S. E. Manley, R. R. Holman, D. R. Matthews, and R. C. Turner, “United Kingdom prospective diabetes study, 30: diabetic retinopathy at diagnosis of noninsulin-dependent diabetes mellitus and associated risk factors,” Arch. Ophthalmol. 116, 297–303 (1998).
  2. A. F. Amos, D. J. McCarty, and P. Zimmet, “The rising global burden of diabetes and its complications: estimates and projections to the year 2010,” Diabet. Med. 14, S7–S85 (1997). [CrossRef]
  3. A. Molven, M. Ringdal, A. M. Nordbo, H. Raeder, J. Stoy, G. M. Lipkind, D. F. Steiner, L. H. Philipson, I. Bergmann, D. Aarskog, D. E. Undlien, G. Joner, O. Sovik, G. I. Bell, and P. R. Njolstad, “Mutations in the insulin gene can cause MODY and autoantibody-negative type 1 diabetes,” Diabetes 57, 1131–1135 (2008). [CrossRef]
  4. R. N. Frank, “Diabetic retinopathy,” Prog. Retinal Eye Res. 14, 361–392 (1995). [CrossRef]
  5. S. C. Lee, E. T. Lee, R. M. Kingsley, Y. Wang, D. Russell, R. Klein, and A. Warn, “Comparison of diagnosis of early retinal lesions of diabetic retinopathy between a computer system and human experts,” Arch. Ophthalmol. 119, 509–515 (2001). [CrossRef]
  6. D. Usher, M. Dumskyj, M. Himaga, T. H. Williamson, S. Nussey, and J. Boyce, “Automated detection of diabetic retinopathy in digital retinal images: a tool for diabetic retinopathy screening,” Diabet. Med. 21, 84–90 (2004). [CrossRef]
  7. C. Sinthanayothin, V. Kongbunkiat, S. Phoojaruenchanachain, and A. Singlavanija, “Automated screening system for diabetic retinopathy,” in Proceedings of the 3rd International Symposium on Image and Signal Processing and Analysis (IEEE, 2003), pp. 915–920.
  8. A. Osareh, M. Mirmehdi, B. Thomas, and R. Markham, “Classification and localisation of diabetic-related eye disease,” in Proceedings of the 7th European Conference on Computer Vision, Lecture Notes in Computer Science 2353 (Springer, 2002), pp. 502–516.
  9. A. W. Reza, C. Eswaran, and S. Hati, “Automatic tracing of optic disc and exudates from color fundus images using fixed and variable thresholds,” J. Med. Syst. 33, 73–80 (2009). [CrossRef]
  10. A. W. Reza, C. Eswaran, and K. Dimyati, “Diagnosis of diabetic retinopathy: automatic extraction of optic disc and exudates from retinal images using marker-controlled watershed transformation,” J. Med. Syst. 35, 1491–1501 (2011). [CrossRef]
  11. H. Narasimha-Iyer, A. Can, B. Roysam, C. V. Stewart, H. L. Tanenbaum, A. Majerovics, and H. Singh, “Robust detection and classification of longitudinal changes in color retinal fundus images for monitoring diabetic retinopathy,” IEEE Trans. Biomed. Eng. 53, 1084–1098 (2006). [CrossRef]
  12. C. Sinthanayothin, J. A. Boyce, H. L. Cook, and T. H. Williamson, “Automated localisation of the optic disc, fovea, and retinal blood vessels from digital colour fundus images,” Br. J. Ophthalmol. 83, 902–910 (1999). [CrossRef]
  13. A. Hoover and M. Goldbaum, “Locating the optic nerve in a retinal image using the fuzzy convergence of the blood vessels,” IEEE Trans. Med. Imag. 22, 951–958 (2003). [CrossRef]
  14. A. Sopharak, B. Uyyanonvara, S. Barman, S. Vongkittirux, and N. Wongkamchang, “Fine exudate detection using morphological reconstruction enhancement,” Int. J. Appl. Biomed. Eng. 1, 45–50 (2010).
  15. A. Sopharak, M. N. Dailey, B. Uyyanonvara, S. Barman, T. Williamson, K. T. Nwe, and Y. A. Moe, “Machine learning approach to automatic exudate detection in retinal images from diabetic patients,” J. Mod. Opt. 57, 124–135 (2010). [CrossRef]
  16. A. Osareh, B. Shadgar, and R. Markham, “A computational-intelligence-based approach for detection of exudates in diabetic retinopathy images,” IEEE Trans. Inf. Technol. Biomed. 13, 535–545 (2009). [CrossRef]
  17. T. Walter, J. C. Klein, P. Massin, and A. Erginay, “A contribution of image processing to the diagnosis of diabetic retinopathy detection of exudates in color fundus images of the human retina,” IEEE Trans. Med. Imag. 21, 1236–1243 (2002). [CrossRef]
  18. H. Wang, W. Hsu, K. Goh, and M. Lee, “An effective approach to detect lesions in colour retinal images,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2000), Vol. 2, pp. 181–187.
  19. H. Yazid, H. Arof, and H. M. Isa, “Automated identification of exudates and optic disc based on inverse surface thresholding,” J. Med. Syst. 36, 1997–2004 (2012). [CrossRef]
  20. U. R. Acharya, K. C. Chua, E. Y. K. Ng, W. Wei, and C. Chee, “Application of higher order spectra for the identification of diabetes retinopathy stages,” J. Med. Syst. 32, 431–488 (2008).
  21. S. C. Lee, E. T. Lee, Y. Wang, R. Klein, R. M. Kingsley, and A. Warn, “Computer classification of nonproliferative diabetic retinopathy,” Arch. Ophthalmol. 123, 759–764 (2005). [CrossRef]
  22. M. U. Akram and S. A. Khan, “Automated detection of dark and bright lesions in retinal images for early detection of diabetic retinopathy,” J. Med. Syst., doi:10.1007/s10916-011-9802-2 (2011). [CrossRef]
  23. A. Tariq and M. U. Akram, “An automated system for colored retinal image background and noise segmentation,” in 2010 IEEE Symposium on Industrial Electronics and Applications (ISIEA) (IEEE, 2010), pp. 405–409.
  24. J. Sung, S. Y. Bang, and S. Choi, “A Bayesian network classifier and hierarchical Gabor features for handwritten numeral recognition,” Pattern Recogn. Lett. 27, 66–75 (2006). [CrossRef]
  25. R. C. Gonzalez and R. E. Woods, Digital Image Processing, 2nd ed. (Prentice-Hall, 2002).
  26. M. U. Akram, A. Khan, K. Iqbal, and W. H. Butt, “Retinal image: optic disk localization and detection,” Image Analysis and Recognition, Lecture Notes in Computer Science 6112 (Springer, 2010), pp. 40–49.
  27. S. Theodoridis and K. Koutroumbas, Pattern Recognition, 1st ed. (Academic, 1999).
  28. R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification (Wiley, 2001).
  29. T. Kauppi, V. Kalesnykiene, J. K. Kamarainen, L. Lensu, I. Sorri, H. Uusitalo, H. Klviinen, and J. Pietil, “DIARETDB0: evaluation database and methodology for diabetic retinopathy algorithms,” Tech. Rep. (2005).
  30. T. Kauppi, V. Kalesnykiene, J.-K. Kamarainen, L. Lensu, I. Sorri, A. Raninen, R. Voutilainen, H. Uusitalo, H. Klviinen, and J. Pietil, “DIARETDB1 diabetic retinopathy database and evaluation protocol,” Tech. Rep. (2006).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited