OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 20 — Jul. 10, 2012
  • pp: 4907–4915

High accuracy alignment facility for the receiver and transmitter of the BepiColombo Laser Altimeter

Sumita Chakraborty, Michael Affolter, Kurt Gunderson, Jakob Neubert, Nicolas Thomas, Thomas Beck, Michael Gerber, Stefan Graf, Daniele Piazza, Antoine Pommerol, Guillaume Roethlisberger, and Karsten Seiferlin  »View Author Affiliations


Applied Optics, Vol. 51, Issue 20, pp. 4907-4915 (2012)
http://dx.doi.org/10.1364/AO.51.004907


View Full Text Article

Enhanced HTML    Acrobat PDF (601 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The accurate co-alignment of the transmitter to the receiver of the BepiColombo Laser Altimeter is a challenging task for which an original alignment concept had to be developed. We present here the design, construction and testing of a large collimator facility built to fulfill the tight alignment requirements. We describe in detail the solution found to attenuate the high energy of the instrument laser transmitter by an original beam splitting pentaprism group. We list the different steps of the calibration of the alignment facility and estimate the errors made at each of these steps. We finally prove that the current facility is ready for the alignment of the flight instrument. Its angular accuracy is 23 μrad.

© 2012 Optical Society of America

OCIS Codes
(120.1680) Instrumentation, measurement, and metrology : Collimation
(280.3400) Remote sensing and sensors : Laser range finder
(120.6085) Instrumentation, measurement, and metrology : Space instrumentation

ToC Category:
Remote Sensing and Sensors

History
Original Manuscript: April 3, 2012
Revised Manuscript: June 3, 2012
Manuscript Accepted: June 4, 2012
Published: July 9, 2012

Citation
Sumita Chakraborty, Michael Affolter, Kurt Gunderson, Jakob Neubert, Nicolas Thomas, Thomas Beck, Michael Gerber, Stefan Graf, Daniele Piazza, Antoine Pommerol, Guillaume Roethlisberger, and Karsten Seiferlin, "High accuracy alignment facility for the receiver and transmitter of the BepiColombo Laser Altimeter," Appl. Opt. 51, 4907-4915 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-20-4907


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. S. Gardner, “Ranging performance of satellite laser altimeters,” IEEE Trans. Geosci. Remote Sens. 30, 1061–1072 (1992). [CrossRef]
  2. D. E. Smith, M. T. Zuber, S. C. Solomon, R. J. Phillips, J. W. Head, J. B. Garvin, W. B. Banerdt, D. O. Muhleman, G. H. Pettengill, G. A. Neumann, F. G. Lemoine, J. B. Abshire, O. Aharonson, D. Brown, S. A. Hauck, A. B. Ivanov, P. J. McGovern, H. J. Zwally, and T. C. Duxbury, “The global topography of Mars and implications for surface evolution,” Science 284, 1495 (1999). [CrossRef]
  3. M. T. Zuber, D. E. Smith, S. C. Solomon, R. J. Phillips, S. J. Peale, J. W. Head, S. A. Hauck, R. L. McNutt, J. Oberst, G. A. Neumann, F. G. Lemoine, X. Sun, O. Barnouin-Jha, and J. K. Harmon, “Laser altimeter observations from MESSENGER’s first Mercury flyby,” Science 321, 77 (2008). [CrossRef]
  4. D. E. Smith, M. T. Zuber, G. A. Neumann, F. G. Lemoine, E. Mazarico, M. H. Torrence, J. F. McGarry, D. D. Rowlands, J. W. Head, T. H. Duxbury, O. Aharonson, P. G. Lucey, M. S. Robinson, O. S. Barnouin, J. F. Cavanaugh, X. Sun, P. Liiva, D. d. Mao, J. C. Smith, and A. E. Bartels, “Initial observations from the Lunar Orbiter Laser Altimeter (LOLA),” Geophys. Res. Lett. 37, L18204 (2010). [CrossRef]
  5. J. A. Kamalakar, K. V. S. Bhaskar, A. S. Laxmi Prasad, R. Ranjith, K. A. Lohar, R. Venketeswaran, and T. K. Alex, “Lunar ranging instrument for Chandrayaan-1,” J. Earth Sys. Sci. 114, 725–731.2005 [CrossRef]
  6. H. Araki, S. Tazawa, H. Noda, Y. Ishihara, S. Goossens, S. Sasaki, N. Kawano, I. Kamiya, H. Otake, J. Oberst, and C. Shum, “Lunar global shape and polar topography derived from kaguya-lalt laser altimetry,” Science 323, 897–900 (2009). [CrossRef]
  7. J. Wang, R. Shu, W. Chen, J. Jia, B. Wang, G. Huang, Y. Hu, and X. Hou, “Laser altimeter of CE-1 payloads system,” Sci. China G: Phys. Astron. 53, 1914–1920 (2010) [CrossRef]
  8. M. T. Zuber, D. E. Smith, A. F. Cheng, J. B. Garvin, O. Aharonson, T. D. Cole, P. J. Dunn, Y. Guo, F. G. Lemoine, G. A. Neumann, D. D. Rowlands, and M. H. Torrence, “The shape of 433 Eros from near-shoemaker laser rangefinder,” Science 289, 2097–2101 (2000). [CrossRef]
  9. O. S. Barnouin-Jha, A. F. Cheng, T. Mukai, S. Abe, N. Hirata, R. Nakamura, R. W. Gaskell, J. Saito, and B. E. Clark, “Small-scale topography of 25143 Itokawa from the Hayabusa laser altimeter,” Icarus 198, 108–124 (2008). [CrossRef]
  10. N. Thomas, T. Spohn, J.-P. Barriot, W. Benz, G. Beutler, U. Christensen, V. Dehant, C. Fallnich, D. Giardini, O. Groussin, K. Gunderson, E. Hauber, M. Hilchenbach, L. Iess, P. Lamy, L.-M. Lara, P. Lognonné, J. J. Lopez-Moreno, H. Michaelis, J. Oberst, D. Resendes, J.-L. Reynaud, R. Rodrigo, S. Sasaki, K. Seiferlin, M. Wieczorek, and J. Whitby, “The BepiColombo Laser Altimeter (BELA): Concept and baseline design,” Planet. Space Sci. 55, 1398–1413 (2007). [CrossRef]
  11. L. Ramos-Izquierdo, V. Stanley Scott, S. Schmidt, J. Britt, W. Mamakos, R. Trunzo, J. Cavanaugh, and R. Miller, “Optical system design and integration of the Mercury Laser Altimeter,” Appl. Opt. 44, 1748–1760 (2005). [CrossRef]
  12. J. F. Cavanaugh, J. C. Smith, X. Sun, A. E. Bartels, L. Ramos-Izquierdo, D. J. Krebs, J. F. McGarry, R. Trunzo, A. M. Novo-Gradac, J. L. Britt, J. Karsh, R. B. Katz, A. T. Lukemire, R. Szymkiewicz, D. L. Berry, J. P. Swinski, G. A. Neumann, T. M. Zuber, and D. E. Smith, “The Mercury Laser Altimeter Instrument for the MESSENGER mission,” Space Sci. Rev. 131, 451–479 (2007). [CrossRef]
  13. Zemax, “Optical design program user’s guide” (2007).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited