OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 21 — Jul. 20, 2012
  • pp: 4995–5003

Closely packed hexagonal conical microlens array fabricated by direct laser photopolymerization

Albertas Žukauskas, Mangirdas Malinauskas, Carsten Reinhardt, Boris N. Chichkov, and Roaldas Gadonas  »View Author Affiliations


Applied Optics, Vol. 51, Issue 21, pp. 4995-5003 (2012)
http://dx.doi.org/10.1364/AO.51.004995


View Full Text Article

Enhanced HTML    Acrobat PDF (967 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We apply femtosecond laser direct writing in photopolymers for manufacturing of conical microlenses and closely packed arrays thereof. We demonstrate the fabrication of high optical quality axicons of 15 µm in radius, having 150°, 160°, and 170° cone angles. Their optical properties and performance are modeled using the finite-difference time-domain method and compared with experimentally measured data. Additionally, optimization of the laser direct writing parameters regarding these types of micro-objects is presented. Possible applications of closely packed arrays of axicon microlenses are discussed, having potential attractivity in the fields of modern microscopy, light-based material processing, particle manipulation in microfluidic, and optofluidic applications.

© 2012 Optical Society of America

OCIS Codes
(160.6060) Materials : Solgel
(220.4000) Optical design and fabrication : Microstructure fabrication
(350.3950) Other areas of optics : Micro-optics

ToC Category:
Materials

History
Original Manuscript: February 3, 2012
Revised Manuscript: May 23, 2012
Manuscript Accepted: June 1, 2012
Published: July 11, 2012

Virtual Issues
Vol. 7, Iss. 9 Virtual Journal for Biomedical Optics

Citation
Albertas Žukauskas, Mangirdas Malinauskas, Carsten Reinhardt, Boris N. Chichkov, and Roaldas Gadonas, "Closely packed hexagonal conical microlens array fabricated by direct laser photopolymerization," Appl. Opt. 51, 4995-5003 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-21-4995


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. C. Cheong, B. P. S. Ahluwalia, X. C. Yuan, L. S. Zhang, H. Wang, H. B. Niu, and X. Peng, “Fabrication of efficient microaxicon by direct electron-beam lithography for long nondiffracting distance of Bessel beams for optical manipulation,” Appl. Phys. Lett. 87, 024104 (2005). [CrossRef]
  2. R. Guo, D. Yuan, and S. Das, “Large-area microlens arrays fabricated on flexible polycarbonate sheets via single-step laser interference ablation,” J. Micromech. Microeng. 21, 015010 (2011). [CrossRef]
  3. L. Qiao, F. He, C. Wang, Y. Cheng, K. Sugioka, and K. Midorikawa, “A microfluidic chip integrated with a microoptical lens fabricated by femtosecond laser micromachining,” Appl. Phys. A 102, 179–183 (2011). [CrossRef]
  4. C. P. Lin, H. Yang, and C. K. Chao, “Hexagonal microlens array modeling and fabrication using a thermal reflow process,” J. Micromech. Microeng. 13, 775–781 (2003). [CrossRef]
  5. S. Cabrini, C. Liberale, D. Cojoc, A. Carpentiero, M. Prasciolu, S. Mora, V. Degiorgio, F. De Angelis, and E. Di Fabrizio, “Axicon lens on optical fiber forming optical tweezers, made by focused ion beam milling,” Microelectron. Eng. 83, 804–807 (2006). [CrossRef]
  6. L. Miccio, A. Finizio, S. Grilli, V. Vespini, M. Paturzo, S. De Nicola, and P. Ferraro, “Tunable liquid microlens arrays in electrode-less configuration and their accurate characterization by interference microscopy,” Opt. Express 17, 2487–2499 (2009). [CrossRef]
  7. F. Chen, H. Liu, Q. Yang, X. Wang, C. Hou, H. Bian, W. Liang, J. Si, and X. Hou, “Maskless fabrication of concave microlens arrays on silica glasses by a femtosecond-laser-enhanced local wet etching method,” Opt. Express 18, 20334–20343 (2010). [CrossRef]
  8. C. N. LaFratta, T. Baldacchini, R. A. Farrer, and J. T. Fourkas, “Replication of two-photon-polymerized structures with extremely high aspect ratios and large overhangs,” J. Phys. Chem. B 108, 11256–11258 (2004). [CrossRef]
  9. J. Kato, N. Takeyasu, Y. Adachi, H. B. Sun, and S. Kawata, “Multiple-spot parallel processing for laser microfabrication,” Appl. Phys. Lett. 86, 044102 (2005). [CrossRef]
  10. S. K. Eah and W. Jhe, “Nearly diffraction-limited focusing of a fiber axicon microlens,” Rev. Sci. Instrum. 74, 4969–4971 (2003). [CrossRef]
  11. M. Beresna, M. Gecevičius, and P. G. Kazansky, “Polarization sensitive elements fabricated by femtosecond laser nanostructuring of glass [Invited],” Opt. Mater. Express 1, 783–795 (2011). [CrossRef]
  12. S. Maruo, O. Nakamura, and S. Kawata, “Three-dimensional microfabrication with two-photon-absorbed photopolymerization,” Opt. Lett. 22, 132–134 (1997). [CrossRef]
  13. J. Fischer and M. Wegener, “Three-dimensional direct laser writing inspired by stimulated-emission-depletion microscopy [Invited],” Opt. Mater. Express 1, 614–624 (2011). [CrossRef]
  14. R. Guo, S. Xiao, X. Zhai, J. Li, A. Xia, and W. Huang, “Micro lens fabrication by means of femtosecond two photon photopolymerization,” Opt. Express 14, 810–816 (2006). [CrossRef]
  15. D. Wu, Q. D. Chen, L. G. Niu, J. Jiao, H. Xia, J. F. Song, and H. B. Sun, “100% fill-factor aspheric microlenses arrays (AMLA) with sub-20 nm precision,” IEEE Photon. Technol. Lett. 21, 1535–1537 (2009). [CrossRef]
  16. Y. Li, Y. Yu, L. Guo, S. Wu, C. Chen, L. Niu, A. Li, and H. Yang, “High efficiency multilevel phase-type Fresnel zone plates produced by two-photon polymerization of SU-8,” J. Opt. 12, 035203 (2010). [CrossRef]
  17. E. Brasselet, M. Malinauskas, A. Žukauskas, and S. Juodkazis, “Photopolymerized microscopic vortex beam generators: precise delivery of optical angular momentum,” Appl. Phys. Lett. 97, 211108 (2010). [CrossRef]
  18. J. H. Atwater, P. Spinelli, E. Kosten, J. Parsons, C. Van Lare, J. Van de Groep, J. Garcia de Abajo, A. Polman, and H. A. Atwater, “Microphotonic parabolic light directors fabricated by two-photon lithography,” Appl. Phys. Lett. 99, 151113 (2011). [CrossRef]
  19. W. F. Lin, Q. D. Chen, L. G. Niu, T. Jiang, W. Q. Wang, and H. B. Sun, “Mask-free production of integratable monolithic micro logarithmic axicon lenses,” J. Lightwave Technol. 28, 1256–1260 (2010). [CrossRef]
  20. G. Cojoc, C. Liberale, P. Candeloro, F. Gentile, G. Das, F. De Angelis, and E. Di Fabrizio, “Optical micro-structures fabricated on top of optical fibers by means of two-photon photopolymerization,” Microelectron. Eng. 87, 876–879 (2010). [CrossRef]
  21. A. Ovsianikov, J. Viertl, B. N. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2, 2257–2262 (2008). [CrossRef]
  22. I. Sakellari, A. Gaidukevičiūtė, A. Giakoumaki, D. Gray, C. Fotakis, M. Farsari, M. Vamvakaki, C. Reinhardt, A. Ovsianikov, and B. N. Chichkov, “Two-photon polymerization of titanium-containing sol-gel composites for three-dimensional structure fabrication,” Appl. Phys. A 100, 359–364 (2010). [CrossRef]
  23. M. Malinauskas, A. Gaidukevičiūtė, V. Purlys, A. Žukauskas, I. Sakellari, E. Kabouraki, A. Candiani, D. Gray, S. Pissadakis, R. Gadonas, A. Piskarskas, C. Fotakis, M. Vamvakaki, and M. Farsari, “Direct laser writing of microoptical structures using a Ge-containing hybrid material,” Metamaterials 5, 135–140 (2011). [CrossRef]
  24. M. Farsari, M. Vamvakaki, and B. N. Chichkov, “Multiphoton polymerization of hybrid materials,” J. Opt. 12, 124001(2010). [CrossRef]
  25. A. Žukauskas, M. Malinauskas, L. Kontenis, V. Purlys, D. Paipulas, M. Vengris, and R. Gadonas, “Organic dye doped microstructures for optically active functional devices fabricated via two-photon polymerization technique,” Lith. J. Phys. 50, 55–61 (2010). [CrossRef]
  26. K. Terzaki, N. Vasilantonakis, A. Gaidukevičiūtė, C. Reinhardt, C. Fotakis, M. Vamvakaki, and M. Farsari, “3D conducting nanostructures fabricated using direct laser writing,” Opt. Mater. Express 1, 586–597 (2011). [CrossRef]
  27. M. Malinauskas, A. Žukauskas, G. Bičkauskaitė, R. Gadonas, and S. Juodkazis, “Mechanism of three-dimensional structuring of photo-polymers by tightly focussed femtosecond laser pulses,” Opt. Express 18, 10209–10221 (2010). [CrossRef]
  28. D. Wu, S. Z. Wu, L. G. Niu, Q. D. Chen, R. Wang, J. F. Song, H. H. Fang, and H. B. Sun, “High numerical aperture microlens arrays of close packing,” Appl. Phys. Lett. 97, 031109 (2010). [CrossRef]
  29. G. Niu, D. Wang, T. Jiang, S. Z. Wu, A. W. Li, and J. F. Song, “High fill-factor multilevel Fresnel zone plate arrays by femtosecond laser direct writing,” Opt. Commun. 284, 777–781 (2011). [CrossRef]
  30. M. Malinauskas, A. Žukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukevičiūtė, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt. 12, 124010 (2010). [CrossRef]
  31. K. Takada, H. B. Sun, and S. Kawata, “Improved spatial resolution and surface roughness in photopolymerization-based laser nanowriting,” Appl. Phys. Lett. 86, 071122 (2005). [CrossRef]
  32. M. Malinauskas, G. Bičkauskaitė, M. Rutkauskas, D. Paipulas, V. Purlys, and R. Gadonas, “Self-polymerization of nano-fibres and nano-membranes induced by two-photon absorption,” Lith. J. Phys. 50, 135–140 (2010). [CrossRef]
  33. M. Malinauskas, H. Gilbergs, A. Žukauskas, V. Purlys, D. Paipulas, and R. Gadonas, “A femtosecond laser-induced two-photon photopolymerization technique for structuring microlenses,” J. Opt. 12, 035204 (2010). [CrossRef]
  34. www.rsoftdesign.com .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited