OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 22 — Aug. 1, 2012
  • pp: 5495–5511

Compact and robust method for full Stokes spectropolarimetry

William Sparks, Thomas A. Germer, John W. MacKenty, and Frans Snik  »View Author Affiliations

Applied Optics, Vol. 51, Issue 22, pp. 5495-5511 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1436 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present an approach to spectropolarimetry that requires neither moving parts nor time dependent modulation, and that offers the prospect of achieving high sensitivity. The technique applies equally well, in principle, in the optical, UV, or IR. The concept, which is one of those generically known as channeled polarimetry, is to encode the polarization information at each wavelength along the spatial dimension of a two-dimensional data array using static, robust optical components. A single 2D data frame contains the full polarization information and can be configured to measure either two or all of the Stokes polarization parameters. By acquiring full polarimetric information in a single observation, we simplify polarimetry of transient sources and in situations where the instrument and target are in relative motion. The robustness and simplicity of the approach, coupled with its potential for high sensitivity, and applicability over a wide wavelength range, is likely to prove useful for applications in challenging environments such as space.

© 2012 Optical Society of America

OCIS Codes
(120.5410) Instrumentation, measurement, and metrology : Polarimetry
(260.5430) Physical optics : Polarization

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: April 16, 2012
Revised Manuscript: June 15, 2012
Manuscript Accepted: June 19, 2012
Published: July 30, 2012

William Sparks, Thomas A. Germer, John W. MacKenty, and Frans Snik, "Compact and robust method for full Stokes spectropolarimetry," Appl. Opt. 51, 5495-5511 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. Snik and C. Keller, “Astronomical polarimetry,” in Planets, Stars and Stellar Systems (Springer, 2012).
  2. D. Goldstein, Polarized Light3rd ed. (CRC Press, 2011).
  3. W. B. Sparks, J. H. Hough, T. A. Germer, F. Chen, S. DasSarma, P. DasSarma, F. Robb, N. Manset, L. Kolokolova, I. Reid, F. Macchetto, and W. Martin, “Detection of circular polarization in light scattered from photosynthetic microbes,” Proc. Natl. Acad. Sci. USA 106, 7816–7821 (2009). [CrossRef]
  4. W. B. Sparks, J. H. Hough, L. Kolokolova, T. A. Germer, F. Chen, S. DasSarma, P. DasSarma, F. T. Robb, N. Manset, I. N. Reid, F. D. Macchetto, and W. Martin, “Circular polarization in scattered light as a possible biomarker,” J. Quant. Spectrosc. Radiat. Transfer 110, 1771–1779 (2009). [CrossRef]
  5. F. Snik, T. Karalidi, and C. Keller, “Spectral modulation for full linear polarimetry,” Appl. Opt. 48, 1337–1346(2009). [CrossRef]
  6. G. van Harten, F. Snik, J. H. H. Rietjens, J. M. Smit, J. de Boer, R. Diamantopoulou, O. P. Hasekamp, D. M. Stam, C. U. Keller, E. C. Laan, A. L. Verlaan, W. A. Vliegenthart, R. Ter Horst, R. Navarro, K. Wielinga, S. Hannemann, S. G. Moon, and R. Voors, “Prototyping for the Spectropolarimeter for Planetary EXploration (SPEX): calibration and sky measurements,” Proc. SPIE  8160, 81600Z (2011).
  7. K. Oka and T. Kaneko, “Compact complete imaging polarimeter using birefringent wedge prisms,” Opt. Express 11, 1510–1519 (2003). [CrossRef]
  8. K. Serkowski, “A polarimetric method of measuring radial velocities,” Publ. Astron. Soc. Pac. 84, 649–651 (1972). [CrossRef]
  9. K. Nordseick, “A simple polarimetric system for the lick observatory image-tube scanner,” Publ. Astron. Soc. Pac. 86, 324–329 (1974). [CrossRef]
  10. K. Oka and T. Kato, “Spectroscopic polarimetry with a channeled spectrum,” Opt. Lett. 24, 1475–1477 (1999). [CrossRef]
  11. R. W. Oka and N. Saito, “Snapshot complete imaging polarimeter using savart plates,” Proc. SPIE 6295, 629508 (2006). [CrossRef]
  12. M. Mujat, E. Baleine, and A. Dogariu, “Interferometric imaging polarimeter,” J. Opt. Soc. Am. 21, 2244–2249 (2004). [CrossRef]
  13. T. Wakayama, Y. Otani, and N. Umeda, “One-shot birefringence dispersion measurement based on channeled spectrum technique,” Opt. Commun. 281, 3668–3672 (2008). [CrossRef]
  14. J. Howard, “Snapshot-imaging motional stark effect polarimetry,” Plasma Phys. Control Fusion 50, 125003 (2008).
  15. M. W. Kudenov, L. Pezzaniti, E. L. Dereniak, and G. R. Gerhart, “Prismatic imaging polarimeter calibration for the infrared spectral region,” Opt. Express 16, 13720 (2008). [CrossRef]
  16. F. Snik, J. H. H. Rietjens, G. van Harten, D. M. Stam, C. U. Keller, J. M. Smit, E. C. Laan, A. L. Verlaan, R. Ter Horst, R. Navarro, K. Wielinga, S. G. Moon, and R. Voors, “SPEX: the spectropolarimeter for planetary exploration,” Proc. SPIE  7731, 77311B (2010).
  17. E. H. Geyer, K. Jockers, N. N. Kiselev, and G. P. Chernova, “A novel quadruple beam imaging polarimeter and its application to Comet Tanaka-Machholz 1992 X,” Astrophys. Space Sci. 239, 259–274 (1996). [CrossRef]
  18. E. Oliva, “Wedged double Wollaston, a device for single shot polarimetric measurements,” Astrophys. Space Sci. 123, 589–592 (1997).
  19. C. Pernechele, E. Giro, and D. Fantinel, “Device for optical linear polarization measurements with a single exposure,” Proc. SPIE  4843, 156–163 (2003).
  20. T. M. Brown, D. Charbonneau, R. L. Gilliland, R. W. Noyes, and A. Burrows, “Hubble Space Telescope time-series photometry of the transiting planet of HD 209458,” Astrophys. J. 552, 699–709 (2001). [CrossRef]
  21. J. M. Beckers, “Variations in the birefringence of quartz,” Appl. Opt. 6, 1279 (1967). [CrossRef]
  22. B. Boulbry, J. C. Ramella-Roman, and T. A. Germer, “Improved method for calibrating a Stokes polarimeter,” Appl. Opt. 46, 8533–8541 (2007). [CrossRef]
  23. P. Bevington, Data Reduction and Error Analysis for the Physical Sciences, 1st ed. (McGraw-Hill, 1968).
  24. P. Bevington and D. Robinson, Data Reduction and Error Analysis for the Physical Sciences, 3rd ed. (McGraw-Hill, 2002).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited