OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 22 — Aug. 1, 2012
  • pp: 5579–5584

High efficiency terahertz-wave photonic crystal fiber optical parametric oscillator

Shaopeng Li, Hongjun Liu, Nan Huang, Qibing Sun, and Xuefeng Li  »View Author Affiliations


Applied Optics, Vol. 51, Issue 22, pp. 5579-5584 (2012)
http://dx.doi.org/10.1364/AO.51.005579


View Full Text Article

Enhanced HTML    Acrobat PDF (630 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We theoretically propose phase matched terahertz (THz)-wave generation via degenerate four-wave mixing (FWM) in a fiber optical parametric oscillator (FOPO) with our newly designed photonic crystal fiber (PCF). Perfect phase matching is realized when we locate the pump wavelength in the normal group-velocity dispersion (GVD) regime. The generated THz-wave can be tuned from 4.7578 to 5.9015 THz by varying the pump wavelength. Moreover, peak power of 27.38 W at 5.9015 THz with conversion efficiency of 1.37% is realized when the pump peak power of 2000 W is at 4.675 μm in our FOPO.

© 2012 Optical Society of America

OCIS Codes
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(190.4970) Nonlinear optics : Parametric oscillators and amplifiers
(320.7140) Ultrafast optics : Ultrafast processes in fibers

ToC Category:
Nonlinear Optics

History
Original Manuscript: April 19, 2012
Revised Manuscript: June 13, 2012
Manuscript Accepted: June 13, 2012
Published: July 31, 2012

Citation
Shaopeng Li, Hongjun Liu, Nan Huang, Qibing Sun, and Xuefeng Li, "High efficiency terahertz-wave photonic crystal fiber optical parametric oscillator," Appl. Opt. 51, 5579-5584 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-22-5579


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. Pradarutti, R. Müller, G. Matthäus, C. Brückner, S. Riehemann, G. Notni, S. Nolte, and A. Tünnermann, “Multichannel balanced electro-optic detection for terahertz imaging,” Opt. Express 15, 17652–17660 (2007). [CrossRef]
  2. L. Ho, M. Pepper, and P. Taday, “Terahertz spectroscopy: signatures and fingerprints,” Nat. Photon. 2, 541–543 (2008). [CrossRef]
  3. J. D. Kraus, Radio Astronomy (Cygnus-Quasar, 1986).
  4. S. Jae Oh, J. Kang, I. Maeng, J.-S. Suh, Y.-M. Huh, S. Haam, and J.-H. Son, “Nanoparticle-enabled terahertz imaging for cancer diagnosis,” Opt. Express 17, 3469–3475 (2009). [CrossRef]
  5. H. Chen, T.-H. Chen, T.-F. Tseng, J.-T. Lu, C.-C. Kuo, S.-C. Fu, W.-J. Lee, Y.-F. Tsai, Y.-Y. Huang, E. Y. Chuang, Y.-J. Hwang, and C.-K. Sun, “High-sensitivity in vivo THz transmission imaging of early human breast cancer in a subcutaneous xenograft mouse model,” Opt. Express 19, 21552–21562 (2011). [CrossRef]
  6. N. Laman, S. Sree Harsha, D. Grischkowsky, and J. S. Melinger, “7 GHz resolution waveguide THz spectroscopy of explosives related solids showing new features,” Opt. Express 16, 4094–4105 (2008). [CrossRef]
  7. W. Shi, Y. J. Ding, N. Fernelius, and K. Vodopyanov, “Efficient, tunable, and coherent 0.18–5.27 THz source based on GaSe crystal,” Opt. Lett. 27, 1454–1456 (2002). [CrossRef]
  8. K. L. Vodopyanov, W. C. Hurlbut, and V. G. Kozlov, “Photonic THz generation in GaAs via resonantly enhanced intracavity multispectral mixing,” Appl. Phys. Lett. 99, 041104 (2011). [CrossRef]
  9. K. Miyamotol, S. Ohnol, M. Fujiwara, H. Minamide, H. Hashimoto, and H. Ito, “Optimized terahertz-wave generation using BNA-DFG,” Opt. Express 17, 14832–14838 (2009). [CrossRef]
  10. B. Sun, S. Li, J. Liu, E. Li, and J. Yao, “Terahertz-wave parametric oscillator with a misalignment-resistant tuning cavity,” Opt. Lett. 36, 1845–1847 (2011). [CrossRef]
  11. K. Suizu, Y. Suzuki, Y. Sasaki, H. Ito, and Y. Avetisyan, “Surface-emitted terahertz-wave generation by ridged periodically poled lithium niobate and enhancement by mixing of two terahertz waves,” Opt. Lett. 31, 957–959 (2006). [CrossRef]
  12. Y. Sasaki, A. Yuri, K. Kawase, and H. Ito, “Terahertz-wave surface-emitted difference frequency generation in slant-stripe-type periodically poled LiNbO3 crystal,” Appl. Phys. Lett. 81, 3323–3325 (2002). [CrossRef]
  13. K. Suizu and K. Kawase, “Terahertz-wave generation in a conventional optical fiber,” Opt. Lett. 32, 2990–2992 (2007). [CrossRef]
  14. M. E. Marhic, K. K.-Y. Wong, and L. G. Kazovsky, “Continuous-wave fiber optical parametric oscillator,” Opt. Lett. 27, 1439–1441 (2002). [CrossRef]
  15. A. Y. H. Chen, G. K. L. Wong, S. G. Murdoch, R. Leonhardt, and J. D. Harvey, “Widely tunable optical parametric generation in a photonic crystal fiber,” Opt. Lett. 30, 762–764 (2005). [CrossRef]
  16. G. K. L. Wong, S. G. Murdoch, R. Leonhardt, and J. D. Harvey, “High-conversion-efficiency widely-tunable allfiber optical parametric oscillator,” Opt. Express 15, 2947–2952 (2007). [CrossRef]
  17. J. E. Sharping, “Microstructure fiber based optical parametric oscillators,” J. Light. Technol. 26, 2184–2191 (2008). [CrossRef]
  18. E. D. Palik, Optical Constants of Solids (Academic, 1985).
  19. R. A. Soref, S. J. Emelett, and W. R. Buchwald, “Silicon waveguided components for the long-wave infrared region,” J. Opt. A 8, 840–848 (2006). [CrossRef]
  20. J. D. Harvey, R. Leonhardt, S. Coen, and G. K. L. Wong, “Scalar modulation instability in the normal dispersion regime by use of a photonic crystal fiber,” Opt. Lett. 28, 2225–2227 (2003). [CrossRef]
  21. J. Wen, H. Liu, N. Huang, Q. Sun, and W. Zhao, “Widely tunable femtosecond optical parametric oscillator based on silicon-on-insulator waveguides,” Opt. Express 20, 3490–3498 (2012). [CrossRef]
  22. M. A. Foster, A. C. Turner, R. Salem, M. Lipson, and A. L. Gaeta, “Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides,” Opt. Express 15, 12949–12958 (2007). [CrossRef]
  23. J. Wen, H. Liu, N. Huang, Q. Sun, and H. Long, “Ultrawide tunable femtosecond optical parametric oscillator around 1.5 μm based on high nonlinear photonic crystal fiber,” Opt. Eng. 50, 085001 (2011). [CrossRef]
  24. Y. Li, L. Qian, D. Lu, and D. Fan, “Widely tunable femtosecond fiber optical parametric oscillator,” Opt. Commun. 267, 491–497 (2006). [CrossRef]
  25. E.-K. Tien, Y. Huang, S. Gao, Q. Song, F. Qian, S. K. Kalyoncu, and O. Boyraz, “Discrete parametric band conversion in silicon for mid-infrared applications,” Opt. Express 18, 21981–21989 (2010). [CrossRef]
  26. A. D. Bristow, N. Rotenberg, and H. M. van Driel, “Two-photon absorption and Kerr coefficients of silicon for 850–2200 nm,” Appl. Lett. 90, 191104 (2007). [CrossRef]
  27. Y. Deng, Q. Lin, F. Lu, G. P. Agrawal, and W. H. Knox, “Broadly tunable femtosecond parametric oscillator using a photonic crystal fiber,” Opt. Lett. 30, 1234–1236 (2005). [CrossRef]
  28. http://www.nature.com/nphoton/journal/v4/n8/full/nphoton.2010.173.html .
  29. E.-K. Tien, Y. Huang, S. Gao, Q. Song, F. Qian, S. K. Kalyoncu, and O. Boyraz, “Discrete parametric band conversion in silicon for mid-infrared applications,” Opt. Express 18, 21981–21989 (2010). [CrossRef]
  30. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited