OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 22 — Aug. 1, 2012
  • pp: 5591–5595

Mode selection in an ultralarge ring laser gyro

Richard D. Graham, Robert B. Hurst, K-Ulrich Schreiber, and Jon-Paul R. Wells  »View Author Affiliations

Applied Optics, Vol. 51, Issue 22, pp. 5591-5595 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (487 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A significant operational difficulty with very large ring laser gyroscopes is the length of time required to achieve the desired single-mode configuration. A control technique has been developed where the order of mode splitting between corotating beams is alternated. Theoretical advantages to this are the elimination of noise caused by variations in perimeter and systematic error caused by Adler pulling. External seeding of mode configurations has been proposed to allow the technique to work fast enough to eliminate known sources of perimeter perturbations. While investigating the intensity requirements for this concept, we found that the operating mode of a large ring laser can be successfully self-seeded with seed beams of near (6±3) single photon cavity mode population.

© 2012 Optical Society of America

OCIS Codes
(140.3370) Lasers and laser optics : Laser gyroscopes
(140.3560) Lasers and laser optics : Lasers, ring
(140.3570) Lasers and laser optics : Lasers, single-mode
(270.5290) Quantum optics : Photon statistics

ToC Category:
Lasers and Laser Optics

Original Manuscript: January 20, 2012
Revised Manuscript: May 8, 2012
Manuscript Accepted: June 8, 2012
Published: August 1, 2012

Richard D. Graham, Robert B. Hurst, K-Ulrich Schreiber, and Jon-Paul R. Wells, "Mode selection in an ultralarge ring laser gyro," Appl. Opt. 51, 5591-5595 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Sagnac, “L’éther lumineux démontré par l’effet du vent relatif d’éther dans un interférométre en rotation uniforme,” C. R. Acad. Sci. 157, 708–710 (1913).
  2. W. Macek, D. Davis, R. Olthuis, J. Schneider, and G. White, “Ring laser rotation rate sensor,” Quantum Electronics; Proceedings of the Third International Congress (Dunod, 1964), p. 1313.
  3. The geometry of the laser is fixed by construction on a base made of materials not especially regarded for stability, in this case the basalt floor of a cavern in Christchurch, New Zealand.
  4. M. S. Longuet-Higgins, “A theory of the origin of microseisms,” Phil. Trans. R. Soc. A 243, 1–35 (1950). [CrossRef]
  5. K. Schreiber, T. Klügel, and G. Stedman, “Earth tide and tilt detection by a ring laser gyroscope,” J. Geophys. Res. 108, 2132–2137 (2003). [CrossRef]
  6. D. Allan, “Statistics of atomic frequency standards,” Proc. IEEE 54, 221–230 (1966). [CrossRef]
  7. D. Allan, “Time and frequency (time-domain) characterization, estimation, and prediction of precision clocks and oscillators,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 34, 647–654 (1987). [CrossRef]
  8. G. E. Stedman, “Ring-laser tests of fundamental physics and geophysics,” Rep. Prog. Phys. 60, 615–688 (1997). [CrossRef]
  9. R. B. Hurst, R. W. Dunn, K. U. Schreiber, R. J. Thirkettle, and G. K. MacDonald, “Mode behavior in ultralarge ring lasers,” Appl. Opt. 43, 2337–2346 (2004). [CrossRef]
  10. R. Hurst, G. Stedman, K. Schreiber, R. Thirkettle, R. Graham, N. Rabeendran, and J.-P. R. Wells, “Experiments with a 834  m2 ring laser interferometer,” J. Appl. Phys. 105, 113115 (2009). [CrossRef]
  11. R. Adler, “A study of locking phenomena in oscillators,” Proc. IRE 34, 351–357 (1946). [CrossRef]
  12. C. Rowe, U. Schreiber, S. Cooper, B. King, M. Poulton, and G. Stedman, “Design and operation of a very large ring laser gyroscope,” Appl. Opt. 38, 2516–2523 (1999). [CrossRef]
  13. R. Graham, “New concepts for operating ring laser gyroscopes,” Ph.D. thesis (University of Canterbury, 2010).
  14. Obtaining the exact perimeter from the mode spacing requires a small correction to be made for the Gouy phase shift and refractive index of the gas.
  15. Computer models of tidal tilts show a pseudoperiodic nature with maximum peak-to-peak deviation of around 0.2 rad, corresponding to a Sagnac deviation of around 300 Hz.
  16. F. Bosi, G. Cella, A. Di Virgilio, A. Ortolan, A. Porzio, S. Solimeno, M. Cerdonio, J. P. Zendri, M. Allegrini, J. Belfi, N. Beverini, B. Bouhadef, G. Carelli, I. Ferrante, E. Maccioni, R. Passaquieti, F. Stefani, M. L. Ruggiero, A. Tartaglia, K. U. Schreiber, A. Gebauer, and J.-P. R. Wells, “Measuring gravitomagnetic effects by a multi-ring-laser gyroscope,” Phys. Rev. D 84, 122002 (2011). [CrossRef]
  17. Y. Park, G. Giuliani, and R. Byer, “Single axial mode operation of a Q-switched Nd:YAG oscillator by injection seeding,” IEEE J. Quantum Electron. 20, 117–125 (1984). [CrossRef]
  18. A. E. Siegman, Lasers (University Science, 1986).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited