OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 24 — Aug. 20, 2012
  • pp: 5941–5945

Multimode interference tapered fiber refractive index sensors

Claudecir R. Biazoli, Susana Silva, Marcos A. R. Franco, Orlando Frazão, and Cristiano M. B. Cordeiro  »View Author Affiliations

Applied Optics, Vol. 51, Issue 24, pp. 5941-5945 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (591 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Real-time monitoring of the fabrication process of tapering down a multimode-interference-based fiber structure is presented. The device is composed of a pure silica multimode fiber (MMF) with an initial 125 μm diameter spliced between two single-mode fibers. The process allows a thin MMF with adjustable parameters to obtain a high signal transmittance, arising from constructive interference among the guided modes at the output end of the MMF. Tapered structures with waist diameters as low as 55 μm were easily fabricated without the limitation of fragile splices or difficulty in controlling lateral fiber alignments. The sensing device is shown to be sensitive to the external environment, and a maximum sensitivity of 2946 nm / refractive index unit in the refractive index range of 1.42–1.43 was attained.

© 2012 Optical Society of America

OCIS Codes
(060.2270) Fiber optics and optical communications : Fiber characterization
(060.2370) Fiber optics and optical communications : Fiber optics sensors

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: April 4, 2012
Revised Manuscript: June 27, 2012
Manuscript Accepted: July 6, 2012
Published: August 20, 2012

Claudecir R. Biazoli, Susana Silva, Marcos A. R. Franco, Orlando Frazão, and Cristiano M. B. Cordeiro, "Multimode interference tapered fiber refractive index sensors," Appl. Opt. 51, 5941-5945 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. O. Frazão, S. Silva, J. Viegas, L. A. Ferreira, F. M. Araújo, and J. L. Santos, “Optical fiber refractometry based on multimode interference,” Appl. Opt. 50, E184–E188 (2011). [CrossRef]
  2. Q. Wang, G. Farrell, and W. Yan, “Investigation on single mode-multimode-single mode fiber structure,” J. Lightwave Technol. 26, 512–519 (2008). [CrossRef]
  3. L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging—principles and applications,” J. Lightwave Technol. 13, 615–627 (1995). [CrossRef]
  4. W. S. Mohammed, P. W. E. Smith, and X. Gu, “All-fiber multimode interference bandpass filter,” Opt. Lett. 31, 2547–2549 (2006). [CrossRef]
  5. J. E. Antonio-Lopez, A. Castillo-Guzman, D. A. May-Arrioja, R. Selvas-Aguilar, and P. L. Wa, “Tunable multimode-interference bandpass fiber filter,” Opt. Lett. 35, 324–326 (2010). [CrossRef]
  6. A. Castillo-Guzman, J. E. Antonio-Lopez, R. Selvas-Aguilar, D. A. May-Arrioja, J. Estudillo-Ayala, and P. L. Wa, “Widely tunable erbium-doped fiber laser based on multimode interference effect,” Opt. Express 18, 591–597 (2010). [CrossRef]
  7. R. X. Gao, Q. Wang, F. Zhao, B. Meng, and S. L. Qu, “Optimal design and fabrication of SMS fiber temperature sensor for liquid,” Opt. Commun. 283, 3149–3152 (2010). [CrossRef]
  8. J. E. Antonio-Lopez, J. J. Sanchez-Mondragon, P. L. Wa, and D. A. May-Arrioja, “Fiber-optic sensor for liquid level measurement,” Opt. Lett. 36, 3425–3427 (2011). [CrossRef]
  9. Q. Wu, Y. Semenova, B. Yan, Y. Ma, P. Wang, C. Yu, and G. Farrell, “Fiber refractometer based on a fiber Bragg grating and single-mode-multimode-single-mode fiber structure,” Opt. Lett. 36, 2197–2199 (2011). [CrossRef]
  10. Q. Wu, Y. Semenova, P. Wang, A. M. Hatta, and G. Farrell, “Experimental demonstration of a simple displacement sensor based on a bent single-mode—multimode—single-mode fiber structure,” Meas. Sci. Technol. 22, 025203 (2011). [CrossRef]
  11. Z. Zang, T. Minato, P. Navaretti, Y. Hinokuma, M. Duelk, C. Velez, and K. Hamamoto, “High power (>110  mW) superluminescent diodes using active multi-mode interferometer,” IEEE Photon. Technol. Lett. 22, 721–723 (2010). [CrossRef]
  12. Z. Zang, K. Mukai, P. Navaretti, M. Duelk, C. Velez, and K. Hamamoto, “Thermal resistance reduction in high power superluminescent diodes by using active multi-mode interferometer,” Appl. Phys. Lett. 100, 031108 (2012). [CrossRef]
  13. Q. Wu, Y. Semenova, P. Wang, and G. Farrell, “High sensitivity SMS fiber structure based refractometer—analysis and experiment,” Opt. Express 19, 7937–7944 (2011). [CrossRef]
  14. S. Silva, E. G. P. Pachon, M. A. R. Franco, J. G. Hayashi, F. X. Malcata, O. Frazão, P. Jorge, and C. M. B. Cordeiro, “Ultrahigh-sensitivity temperature fiber sensor based on multimode interference,” Appl. Opt. 51, 3236–3242 (2012). [CrossRef]
  15. P. Wang, G. Brambilla, M. Ding, Y. Semenova, Q. Wu, and G. Farrell, “High-sensitivity, evanescent field refractometric sensor based on a tapered, multimode fiber interference,” Opt. Lett. 36, 2233–2235 (2011). [CrossRef]
  16. P. Wang, G. Brambilla, M. Ding, Y. Semenova, Q. Wu, and G. Farrell, “Investigation of single-mode—multimode—single-mode and single-mode—tapered-multimode—single-mode fiber structures and their application for refractive index sensing,” J. Opt. Soc. Am. B 28, 1180–1186 (2011). [CrossRef]
  17. G. Brambilla, V. Finazzi, and D. J. Richardson, “Ultra-low-loss optical fiber nanotapers,” Opt. Express 12, 2258–2263 (2004). [CrossRef]
  18. T. A. Birks and Y. W. Li, “The shape of fiber tapers,” J. Lightwave Technol. 10, 432–438 (1992). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (3113 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited