OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 25 — Sep. 1, 2012
  • pp: 5952–5959

Effective algorithm for high-channel-count multichannel fiber Bragg grating designs

Yuhsin Chang and Chyong-Hua Chen  »View Author Affiliations

Applied Optics, Vol. 51, Issue 25, pp. 5952-5959 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (791 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present an efficient approach to design a high-channel-count multichannel fiber Bragg grating by assigning optimal sets of delay coefficients and constant phases to the corresponding channel responses. Based on approximate Fourier transform, the delay coefficients are chosen to separate all the single-channel gratings into several groups spatially in the grating structure, and the constant phases in each group are optimized to minimize the maximum index modulation to be approximately the square root of the maximum of the number of the channels in all groups times larger than that of the one-channel grating. Design examples demonstrate that the proposed method has advantages of low index modulation, low algorithmic complexity, and suitability for multichannel fiber Bragg grating designs with either identical or nonidentical spectral responses.

© 2012 Optical Society of America

OCIS Codes
(060.2330) Fiber optics and optical communications : Fiber optics communications
(060.2340) Fiber optics and optical communications : Fiber optics components
(260.2030) Physical optics : Dispersion
(060.3735) Fiber optics and optical communications : Fiber Bragg gratings
(230.7408) Optical devices : Wavelength filtering devices

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: April 19, 2012
Revised Manuscript: July 17, 2012
Manuscript Accepted: July 17, 2012
Published: August 22, 2012

Yuhsin Chang and Chyong-Hua Chen, "Effective algorithm for high-channel-count multichannel fiber Bragg grating designs," Appl. Opt. 51, 5952-5959 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Othonos and K. Kalli, Fiber Bragg Gratings (Artech House, 1999).
  2. J. Bland-Hawthorn, M. Englund, and G. Edvell, “New approach to atmospheric OH suppression using an aperiodic fibre Bragg grating,” Opt. Express 12, 5902–5909 (2004). [CrossRef]
  3. J. Bland-Hawthorn, S. C. Ellis, S. G. Leon-Saval, R. Haynes, M. M. Roth, H.-G. Löhmannsröben, A. J. Horton, J.-G. Cuby, T. A. Birks, J. S. Lawrence, P. Gillingham, S. D. Ryder, and C. Trinh, “A complex multi-notch astronomical filter to suppress the bright infrared sky,” Nat. Commun. 2, 581 (2011). [CrossRef]
  4. A. Othonos, X. Lee, and R. M. Measures, “Superimposed multiple Bragg gratings,” Electron. Lett. 30, 1972–1974 (1994). [CrossRef]
  5. A. Arigiris, M. Konstantaki, A. Ikades, D. Chronis, P. Florias, K. Kallimani, and G. Pagiatakis, “Fabrication of high-reflectivity superimposed multiple-fiber Bragg gratings with unequal wavelength spacing,” Opt. Lett. 27, 1306–1308 (2002). [CrossRef]
  6. C. Wang, J. Azana, and L. R. Chen, “Efficient technique for increasing the channel density in multiwavelength sampled fiber Bragg grating filters,” IEEE Photon. Technol. Lett. 16, 1867–1869 (2004). [CrossRef]
  7. C. Wang, J. Azana, and L. R. Chen, “Spectral Talbot-like phenomena in one-dimensional photonic bandgap structures,” Opt. Lett. 29, 1590–1592 (2004). [CrossRef]
  8. L. R. Chen and J. Azaña, “Spectral Talbot phenomena in sampled arbitrarily chirped Bragg gratings,” Opt. Commun. 250, 302–308 (2005). [CrossRef]
  9. A. V. Buryak, K. Y. Kolossovski, and D. Y. Stepanov, “Optimization of refractive index sampling for multichannel fiber Bragg gratings,” IEEE J. Quantum Electron. 39, 91–98 (2003). [CrossRef]
  10. M. Ibsen, M. K. Durkin, M. J. Cole, and R. I. Laming, “Sinc-sampled fiber Bragg gratings for identical multiple wavelength operation,” IEEE Photon. Technol. Lett. 10, 842–844 (1998). [CrossRef]
  11. J. E. Rothenberg, “Phase-only sampled 45 channel fiber Bragg grating written with a diffraction-compensated phase mask,” Opt. Lett. 31, 1199–1201 (2006). [CrossRef]
  12. H. Li, M. Li, K. Ogusu, Y. Sheng, and J. E. Rothenberg, “Optimization of a continuous phase-only sampling for high channel-count fiber Bragg gratings,” Opt. Express 14, 3152–3160 (2006). [CrossRef]
  13. H. Li, Y. Sheng, Y. Li, and J. E. Rothenberg, “Phased-only sampled fiber Bragg gratings for high channel counts chromatic dispersion compensation,” J. Lightwave Technol. 21, 2074–2083 (2003). [CrossRef]
  14. K. Kolossovski, R. Sammut, A. Buryak, and D. Stepanov, “Three-step design optimization for multi-channel fibre Bragg gratings,” Opt. Express 11, 1029–1038 (2003). [CrossRef]
  15. M. Li, X. Chen, J. Hayashi, and H. Li, “Advanced design of the ultrahigh-channel-count fiber Bragg grating based on the double sampling method,” Opt. Express 17, 8382–8394 (2009). [CrossRef]
  16. X. Chen, J. Hayashi, and H. Li, “Simultaneous dispersion and dispersion-slope compensator based on a doubly sampled ultrahigh-channel-count fiber Bragg grating,” Appl. Opt. 49, 823–828 (2010). [CrossRef]
  17. X. Chen, J. Hayashi, and H. Li, “Ultrahigh-channel-count fiber Bragg grating based on the triple sampling method,” Opt. Commun. 284, 1842–1846 (2011). [CrossRef]
  18. A. Buryak, J. Bland-Hawthorn, and V. Steblina, “Comparison of inverse scattering algorithms for designing ultrabroadband fibre Bragg gratings,” Opt. Express 17, 1995–2004 (2009). [CrossRef]
  19. H. Li and Y. Sheng, “Direct design of multichannel fiber Bragg grating with discrete layer-peeling algorithm,” IEEE Photon. Technol. Lett. 15, 1252–1254 (2003). [CrossRef]
  20. H. Li, T. Kumagai, K. Ogusu, and Y. Sheng, “Advanced design of a multichannel fiber Bragg grating based on a layer-peeling method,” J. Opt. Soc. Am. B 21, 1929–1938 (2004). [CrossRef]
  21. C. Lee, R. Lee, and Y. Kao, “Design of multichannel DWDM fiber Bragg grating filters by Lagrange multiplier constrained optimization,” Opt. Express 14, 11002–11011(2006). [CrossRef]
  22. Y. Gong, X. Liu, L. Wang, X. Hu, A. Lin, and W. Zhao, “Optimal design of multichannel fiber Bragg grating filters with small dispersion and low index modulation” J. Lightwave Technol. 27, 3235–3240 (2009). [CrossRef]
  23. J. Bland-Hawthorn, A. Buryak, and K. Kolossovski, “Optimization algorithm for ultrabroadband multichannel aperiodic fiber Bragg grating filters,” J. Opt. Soc. Am. A 25, 153–158 (2008). [CrossRef]
  24. R. Feced, M. N. Zervas, and M. A. Muriel, “An efficient inverse scattering algorithm for the design of nonuniform fiber Bragg gratings,” IEEE J. Quantum Electron. 35, 1105–1115 (1999). [CrossRef]
  25. J. Skaar, L. Wang, and T. Erdogan, “On the synthesis of fiber Bragg grating by layer peeling,” IEEE J. Quantum Electron. 37, 165–173 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited