OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 25 — Sep. 1, 2012
  • pp: 5973–5977

Back-focal-plane position detection with extended linear range for photonic force microscopy

Ignacio A. Martínez and Dmitri Petrov  »View Author Affiliations


Applied Optics, Vol. 51, Issue 25, pp. 5973-5977 (2012)
http://dx.doi.org/10.1364/AO.51.005973


View Full Text Article

Enhanced HTML    Acrobat PDF (347 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In photonic force microscopes, the position detection with high temporal and spatial resolution is usually implemented by a quadrant position detector placed in the back focal plane of a condenser. An objective with high numerical aperture (NA) for the optical trap has also been used to focus a detection beam. In that case the displacement of the probe at a fixed position of the detector produces a unique and linear response only in a restricted region of the probe displacement, usually several hundred nanometers. There are specific experiments where the absolute position of the probe is a relevant measure together with the probe position relative the optical trap focus. In our scheme we introduce the detection beam into the condenser with low NA through a pinhole with tunable size. This combination permits us to create a wide detection spot and to achieve the linear range of several micrometers by the probe position detection without reducing the trapping force.

© 2012 Optical Society of America

OCIS Codes
(290.5820) Scattering : Scattering measurements
(350.4855) Other areas of optics : Optical tweezers or optical manipulation

ToC Category:
Scattering

History
Original Manuscript: March 26, 2012
Revised Manuscript: June 14, 2012
Manuscript Accepted: July 17, 2012
Published: August 22, 2012

Virtual Issues
Vol. 7, Iss. 11 Virtual Journal for Biomedical Optics

Citation
Ignacio A. Martínez and Dmitri Petrov, "Back-focal-plane position detection with extended linear range for photonic force microscopy," Appl. Opt. 51, 5973-5977 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-25-5973


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. P. Ghislain and W. W. Webb, “Scanning-force microscope based on an optical trap,” Opt. Lett. 18, 1678–1680 (1993). [CrossRef]
  2. L. P. Ghislain, N. A. Switz, and W. W. Webb, “Measurement of small forces using an optical trap,” Rev. Sci. Instrum. 65, 2762–2768 (1994). [CrossRef]
  3. K. Visscher, S. P. Gross, and S. M. Block, “Construction of mutiple-beam optical traps with nanometric-resolution position sensing,” IEEE J. Sel. Top. Quantum Electron. 2, 1066–1076 (1996). [CrossRef]
  4. A. Prälle, M. Prummer, E.-L. Florin, E. H. K. Stelzer, and J. K. H. Hörber, “Three-dimensional high-resolution particle tracking for optical tweezers by forward scattered light,” Microsc. Res. Tech. 44, 378–386 (1999). [CrossRef]
  5. A. Rohrbach, C. Tischer, D. Neumayer, E. L. Florin, and E. H. K. Stelzer, “Trapping and tracking a local probe with a photonic force microscope,” Rev. Sci. Instrum. 75, 2197–2210 (2004). [CrossRef]
  6. F. Gittes and C. F. Schmidt, “Interference model for back-focal-plane displacement detection in optical tweezers,” Opt. Lett. 23, 7–9 (1998). [CrossRef]
  7. S. B. Smith, Y. Cui, and C. Bustamante, “Overstretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules,” Science 271, 795–799 (1996). [CrossRef]
  8. S. R. Quake, H. Babcock, and S. Chu, “The dynamics of partially extended single molecules of DNA,” Nature 388, 151–154 (1997). [CrossRef]
  9. M. D. Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block, “Stretching DNA with optical tweezers,” Biophys. J. 72, 1335–1346 (1997). [CrossRef]
  10. J. Dong, C. E. Castro, M. C. Boyce, M. J. Lang, and S. Lindquist, “Optical trapping with high forces reveals unexpected behaviors of prion fibrils,” Nat. Struct. Mol. Biol. 17, 1422–1430 (2010). [CrossRef]
  11. L. P. Faucheux, G. Stolovitzky, and A. Libchaber, “Periodic forcing of a Brownian particle,” Phys. Rev. E 51, 5239–5250 (1995). [CrossRef]
  12. G. Wang, E. Sevick, E. Mittag, D. Searles, and D. Evans, “Experimental demonstration of violations of the second law of thermodynamics for small systems and short time scales,” Phys. Rev. Lett. 89, 050601 (2002). [CrossRef]
  13. A. Imparato, L. Peliti, G. Pesce, G. Rusciano, and A. Sasso, “Work and heat probability distribution of an optically driven Brownian particle: theory and experiments,” Phys. Rev. E 76, 050101 (2007). [CrossRef]
  14. A. Simon and A. Libchaber, “Escape and synchronization of a Brownian particle,” Phys. Rev. Lett. 68, 3375–3378(1992). [CrossRef]
  15. L. I. McCann, M. Dykman, and B. Golding, “Thermally activated transitions in a bistable three-dimensional optical trap,” Nature 402, 785–787 (1999). [CrossRef]
  16. C. Schmidt, B. Dybiec, P. Hänggi, and C. Bechinger, “Stochastic resonance vs. resonant activation,” Europhys. Lett. 74, 937–943 (2006). [CrossRef]
  17. K. Dholakia and P. Zemanek, “Colloquium: gripped by light: optical binding,” Rev. Mod. Phys. 82, 1767–1791 (2010). [CrossRef]
  18. J. Gomez-Solano, A. Petrosyan, S. Ciliberto, R. Chetrite, and K. Gawedzki, “Experimental verification of a modified fluctuation–dissipation relation for a micron-sized particle in a nonequilibrium steady state,” Phys. Rev. Lett. 103, 040601 (2009). [CrossRef]
  19. P. Hänggi and F. Marchesoni, “Artificial Brownian motors: controlling transport on the nanoscale,” Rev. Mod. Phys. 81, 387–442 (2009). [CrossRef]
  20. J. Crocker and D. G. Grier, “Methods of digital video microscopy for colloidal studies,” J. Colloid Interface Sci. 179, 298–310 (1996). [CrossRef]
  21. M. J. Lang, C. L. Asbury, J. W. Shaevitz, and S. M. Block, “An automated two-dimensional optical force clamp for single molecule studies,” Biophys. J. 83, 491–501 (2002). [CrossRef]
  22. A. Rohrbach, H. Kress, and E. H. K. Stelzer, “Three-dimensional tracking of small spheres in focused laser beams: influence of the detection angular aperture,” Opt. Lett. 28, 411–413 (2003). [CrossRef]
  23. G. Volpe, G. Kozyreff, and D. Petrov, “Backscattering position detection for photonic force microscopy,” J. Appl. Phys. 102, 084701 (2007). [CrossRef]
  24. B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems II,” Proc. R. Soc. A 253, 358–379 (1959). [CrossRef]
  25. F. Gittes and C. F. Schmidt, “Signals and noise in micromechanical measurements,” Methods Cell Biol. 55, 129–156 (1998). [CrossRef]
  26. S. Perrone, G. Volpe, and D. Petrov, “10-fold detection range increase in quadrant-photodiode position sensing for photonic force microscope,” Rev. Sci. Instrum. 79, 106101 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited