OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 25 — Sep. 1, 2012
  • pp: 6139–6146

Direct multiangle solution for poorly stratified atmospheres

Vladimir Kovalev, Cyle Wold, Alexander Petkov, and Wei Min Hao  »View Author Affiliations


Applied Optics, Vol. 51, Issue 25, pp. 6139-6146 (2012)
http://dx.doi.org/10.1364/AO.51.006139


View Full Text Article

Enhanced HTML    Acrobat PDF (664 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The direct multiangle solution is considered, which allows improving the scanning lidar-data-inversion accuracy when the requirement of the horizontally stratified atmosphere is poorly met. The signal measured at zenith or close to zenith is used as a core source for extracting optical characteristics of the atmospheric aerosol loading. The multiangle signals are used as auxiliary data to extract the vertical transmittance profile from the zenith signal. Details of the retrieval methodology are considered that eliminate, or at least soften, some specific ambiguities in the multiangle measurements in horizontally heterogeneous atmospheres. Simulated and experimental elastic lidar data are presented that illustrate the essentials of the data-processing technique. Finally, the prospects of the utilization of high-spectral-resolution lidar in the multiangle mode are discussed.

© 2012 Optical Society of America

OCIS Codes
(280.3640) Remote sensing and sensors : Lidar
(290.1350) Scattering : Backscattering
(290.2200) Scattering : Extinction

ToC Category:
Remote Sensing and Sensors

History
Original Manuscript: December 12, 2011
Revised Manuscript: June 19, 2012
Manuscript Accepted: August 9, 2012
Published: August 29, 2012

Citation
Vladimir Kovalev, Cyle Wold, Alexander Petkov, and Wei Min Hao, "Direct multiangle solution for poorly stratified atmospheres," Appl. Opt. 51, 6139-6146 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-25-6139


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Kano, “On the determination of backscattering and extinction coefficient of the atmosphere by using a laser radar,” Papers Meteorol. Geophys. 19, 121–129 (1968).
  2. P. M. Hamilton, “Lidar measurement of backscatter and attenuation of atmospheric aerosol,” Atmos. Environ. 3, 221–223 (1969). [CrossRef]
  3. J. D. Spinhirne, J. A. Reagan, and B. M. Herman, “Vertical distribution of aerosol extinction cross section and inference of aerosol imaginary index in the troposphere by lidar technique,” J. Appl. Meteorol. 19, 426–438 (1980). [CrossRef]
  4. T. Takamura, Y. Sasano, and T. Hayasaka, “Tropospheric aerosol optical properties derived from lidar, sun photometer, and optical particle counter measurements,” Appl. Opt. 33, 7132–7140 (1994). [CrossRef]
  5. M. Sicard, P. Chazette, J. Pelon, J. G. Won, and S. Yoon, “Variational method for the retrieval of the optical thickness and the backscatter coefficient from multiangle lidar profiles,” Appl. Opt. 41, 493–502 (2002). [CrossRef]
  6. J. N. Porter, B. Lienert, and S. K. Sharma, “Using horizontal and slant lidar measurements to obtain calibrated aerosol scattering coefficients from a coastal lidar in Hawaii,” J. Atmos. Ocean. Technol. 17, 1445–1454 (2000). [CrossRef]
  7. V. A. Kovalev, “Distortion of the extinction-coefficient profiles caused by systematic distortions in lidar data,” Appl. Opt. 43, 3191–3198 (2004). [CrossRef]
  8. V. A. Kovalev, W. M. Hao, C. Wold, and M. Adam, “Experimental method for the examination of systematic distortions in lidar data,” Appl. Opt. 46, 6710–6718 (2007). [CrossRef]
  9. V. A. Kovalev, W. M. Hao, and C. Wold, “Determination of the particulate extinction-coefficient profile and the column-integrated lidar ratios using the backscatter-coefficient and optical-depth profiles,” Appl. Opt. 46, 8627–8634 (2007). [CrossRef]
  10. V. Kovalev, C. Wold, W. M. Hao, and B. Nordgren, “Improved methodology for the retrieval of the particulate extinction coefficient and lidar ratio from the lidar multiangle measurement,” Proc. SPIE 6750, 67501B (2007). [CrossRef]
  11. V. A. Kovalev, A. Petkov, C. Wold, and W. M. Hao, “Modified technique for processing multiangle lidar data measured in clear and moderately polluted atmospheres,” Appl. Opt. 50, 4957–4966 (2011). [CrossRef]
  12. M. Esselborn, M. Wirth, A. Fix, M. Tesche, and G. Ehret, “Airborne high spectral resolution lidar for measuring aerosol extinction and backscatter coefficients,” Appl. Opt. 47, 346–358 (2008). [CrossRef]
  13. J. W. Hair, C. A. Hostetler, A. L. Cook, D. B. Harper, R. A. Ferrare, T. L. Mack, W. Welch, L. R. Izquierdo, and F. E. Hovis, “Airborne high spectral resolution lidar for profiling aerosol optical properties,” Appl. Opt. 47, 6734–6752 (2008). [CrossRef]
  14. B. Liu, M. Esselborn, M. Wirth, A. Fix, D. Bi, and G. Ehret, “Influence of molecular scattering models on aerosol optical properties measured by high spectral resolution lidar,” Appl. Opt. 48, 5143–5154 (2009). [CrossRef]
  15. R. R. Rogers, C. A. Hostetler, J. W. Hair, R. A. Ferrare, Z. Liu, M. D. Obland, D. B. Harper, A. L. Cook, K. A. Powell, M. A. Vaughan, and D. M. Winker, “Assessment of the CALIPSO lidar 532 nm attenuated backscatter calibration using the NASA LaRC airborne high spectral resolution lidar,” Atmos. Chem. Phys. 11, 1295–1311 (2011). [CrossRef]
  16. M. Adam, V. Kovalev, C. Wold, J. Newton, M. Pahlow, W. M. Hao, and M. B. Parlange, “Application of the Kano–Hamilton multiangle inversion method in clear atmospheres,” J. Atmos. Ocean. Technol. 24, 2014–2028 (2007). [CrossRef]
  17. D. N. Whiteman, “Application of statistical methods to the determination of slope in lidar data,” Appl. Opt. 38, 3360–3369 (1999). [CrossRef]
  18. S. N. Volkov, B. V. Kaul, and D. I. Shelefontuk, “Optimal method of linear regression in laser remote sensing,” Appl. Opt. 41, 5078–5083 (2002). [CrossRef]
  19. F. Rocadenbosch, A. Comeron, and D. Pineda, “Assessment of lidar inversion errors for homogeneous atmospheres,” Appl. Opt. 37, 2199–2206 (1998). [CrossRef]
  20. M. Adam, “Vertical versus scanning lidar measurements in horizontally homogeneous atmosphere,” Appl. Opt. 51, 4491–4500 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited