OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 25 — Sep. 1, 2012
  • pp: 6159–6171

Radiative properties of dense nanofluids

Wei Wei, Andrei G. Fedorov, Zhongyang Luo, and Mingjiang Ni  »View Author Affiliations


Applied Optics, Vol. 51, Issue 25, pp. 6159-6171 (2012)
http://dx.doi.org/10.1364/AO.51.006159


View Full Text Article

Enhanced HTML    Acrobat PDF (925 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The radiative properties of dense nanofluids are investigated. For nanofluids, scattering and absorbing of electromagnetic waves by nanoparticles, as well as light absorption by the matrix/fluid in which the nanoparticles are suspended, should be considered. We compare five models for predicting apparent radiative properties of nanoparticulate media and evaluate their applicability. Using spectral absorption and scattering coefficients predicted by different models, we compute the apparent transmittance of a nanofluid layer, including multiple reflecting interfaces bounding the layer, and compare the model predictions with experimental results from the literature. Finally, we propose a new method to calculate the spectral radiative properties of dense nanofluids that shows quantitatively good agreement with the experimental results.

© 2012 Optical Society of America

OCIS Codes
(290.5850) Scattering : Scattering, particles
(350.5610) Other areas of optics : Radiation
(350.6050) Other areas of optics : Solar energy
(160.4236) Materials : Nanomaterials
(260.2710) Physical optics : Inhomogeneous optical media

ToC Category:
Materials

History
Original Manuscript: May 23, 2012
Revised Manuscript: July 26, 2012
Manuscript Accepted: July 29, 2012
Published: August 29, 2012

Citation
Wei Wei, Andrei G. Fedorov, Zhongyang Luo, and Mingjiang Ni, "Radiative properties of dense nanofluids," Appl. Opt. 51, 6159-6171 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-25-6159


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Buongiorno, “Convective transport in nanofluids,” J. Heat Transfer 128, 240–250 (2006). [CrossRef]
  2. S. K. Das, S. U. Choi, W. Yu, and T. Pradeep, Nanofluids: Science and Technology (Wiley-Interscience, 2007), p. 397.
  3. K. Sadik and A. Pramuanjaroenckij, “Review of convective heat transfer enhancement with nanofluids,” Int. J. Heat Mass Transfer 52, 3187–3196 (2009). [CrossRef]
  4. J. Buongiorno, D. C. Venerus, N. Prabhat, T. McKrell, J. Townsend, R. Christianson, Y. V. Tolmachev, P. Keblinski, L.-w. Hu, J. L. Alvarado, I. C. Bang, S. W. Bishnoi, M. Bonetti, F. Botz, A. Cecere, Y. Chang, G. Chen, H. Chen, S. J. Chung, M. K. Chyu, S. K. Das, R. D. Paola, Y. Ding, F. Dubois, G. Dzido, J. Eapen, W. Escher, D. Funfschilling, Q. Galand, J. Gao, P. E. Gharagozloo, K. E. Goodson, J. G. Gutierrez, H. Hong, M. Horton, K. S. Hwang, C. S. Iorio, S. P. Jang, A. B. Jarzebski, Y. Jiang, L. Jin, S. Kabelac, A. Kamath, M. A. Kedzierski, L. G. Kieng, C. Kim, J.-H. Kim, S. Kim, S. H. Lee, K. C. Leong, I. Manna, B. Michel, R. Ni, H. E. Patel, J. Philip, D. Poulikakos, C. Reynaud, R. Savino, P. K. Singh, P. Song, T. Sundararajan, E. Timofeeva, T. Tritcak, A. N. Turanov, S. V. Vaerenbergh, D. Wen, S. Witharana, C. Yang, W.-H. Yeh, X.-Z. Zhao, and S.-Q. Zhou, “A benchmark study on the thermal conductivity of nanofluids,” J. Appl. Phys. 106, 094312 (2009). [CrossRef]
  5. K. V. Wong and O. D. Leon, “Applications of nanofluids: current and future,” Adv. Mech. Eng. 2010, 519659 (2010). [CrossRef]
  6. J. A. Eastman, S. R. Phillpot, S. U. S. Choi, and P. Keblinski, “Thermal transport in nanofluids 1,” Annu. Rev. Mater. Res. 34, 219–246 (2004). [CrossRef]
  7. S. K. Das, S. U. S. Choi, and H. E. Patel, “Heat transfer in nanofluids—a review,” Heat Transfer Eng. 27, 3–19 (2006). [CrossRef]
  8. X.-Q. Wang and A. S. Mujumdar, “Heat transfer characteristics of nanofluids: a review,” Int. J. Therm. Sci. 46, 1–19(2007). [CrossRef]
  9. S. M. S. Murshed, K. C. Leong, and C. Yang, “Thermophysical and electrokinetic properties of nanofluids—a critical review,” Appl. Therm. Eng. 28, 2109–2125 (2008). [CrossRef]
  10. R. A. Taylor, P. E. Phelan, T. D. Otanicar, C. A. Walker, M. Nguyen, S. Trimble, and R. S. Prasher, “Applicability of nanofluids in high flux solar collectors,” J. Renewable Sustainable Energy 3, 023104 (2011). [CrossRef]
  11. A. J. Hunt, “Small particle heat exchangers,” LBL-7841, report for the U. S. Department of Energy (Lawrence Berkeley Laboratory, 1978).
  12. F. J. Miller and R. W. Koenigsdorff, “Thermal modeling of a small-particle solar central receiver,” J. Solar Energy Eng. 122, 23–29 (2000). [CrossRef]
  13. J. Oman and P. Novak, “Volumetric absorption in gas-properties of particles and particle-gas suspensions,” Solar Energy 56, 597–606 (1996). [CrossRef]
  14. H. Tyagi, P. Phelan, and R. Prasher, “Predicted efficiency of a low-temperature nanofluid-based direct absorption solar collector,” J. Solar Energy Eng. 131, 041004 (2009). [CrossRef]
  15. M. R. Jacobson, H. A. Macleod, and R. Swenson, “Spectral selectivity applied to hybrid concentration systems,” Sol. Energy Mater. 14, 299–325 (1986). [CrossRef]
  16. M. A. Hamdy, F. Luttmann, and D. Osborn, “Model of a spectrally selective decoupled photovoltaic/thermal concentrating system,” Appl. Energy 30, 209–225 (1988). [CrossRef]
  17. M. A. Hamdy and S. H. El-Hefnawi, “Effect of spectrally selective liquid absorption-filters on silicon solar-cells,” Appl. Energy 35, 177–188 (1990). [CrossRef]
  18. J. Zhao, M. Ni, C. Shou, Y. Zhang, W. Wei, J. Zhang, Z. Luo, and K. Cen, “Optimum optical properties of the working fluid in a direct absorption collector,” J. Enhanc. Heat Transf. 18, 239–247 (2011). [CrossRef]
  19. J. Zhao, “Study of nanofluids’ radiation properties and its utilization in photovoltaic/thermal system,” Ph.D. dissertation (Zhejiang University, 2009).
  20. S. Kumar and C. L. Tien, “Dependent absorption and extinction of radiation by small particles,” J. Heat Transfer 112, 178–185 (1990). [CrossRef]
  21. B. L. Drolen and C. L. Tien, “Independent and dependent scattering in packed-sphere systems,” J. Thermophys. Heat Transfer 1, 63–68 (1987). [CrossRef]
  22. C. L. Tien, “Thermal radiation in packed and fluidized beds,” J. Heat Transfer 110, 1230 (1988). [CrossRef]
  23. C. L. Tien and B. L. Drolen, “Thermal radiation in particulate media with dependent and independent scattering,” Annu. Rev. Numer. Fluid Mech. Heat Transfer 1, 1–32(1987).
  24. M. F. Modest, Radiation Heat Transfer (McGraw-Hill, 1993).
  25. T. M. Nieuwenhuizen and M. C. W. van Rossum, “Multiple scattering of classical waves: microscopy, mesoscopy, and diffusion,” Rev. Mod. Phys. 71, 313–371 (1999). [CrossRef]
  26. I. Turcu, “Effective phase function for light scattered by blood,” Appl. Opt. 45, 639–647 (2006). [CrossRef]
  27. M. Kocifaj, “Approximate analytical scattering phase function dependent on microphysical characteristics of dust particles,” Appl. Opt. 50, 2493–2499 (2011). [CrossRef]
  28. J. H. Page, H. P. Schriemer, I. P. Jones, S. Ping, and D. A. Weitz, “Classical wave propagation in strongly scattering media,” Physica A 241, 64–71 (1997). [CrossRef]
  29. H. Sato and M. C. Fehler, Seismic Wave Propagation and Scattering in the Heterogenous Earth (AIP, 1998).
  30. A. Ishimaru, Wave Propagation and Scattering in Random Media (Wiley, 1999).
  31. G. Mie, “Contributions to the optics of turbid media, particularly of colloidal metal solutions,” Ann. Phys. 330, 377–445 (1908). [CrossRef]
  32. S. Fraden and G. Maret, “Multiple light scattering from concentrated, interacting suspensions,” Phys. Rev. Lett. 65, 512–515 (1990). [CrossRef]
  33. B. A. van Tiggelen, A. Lagendijk, and A. Tip, “Multiple-scattering effects for the propagation of light in 3D,” J. Phys. Condens. Matter 2, 7653–7677 (1990). [CrossRef]
  34. L. Tsang, C. E. Mandt, and K. H. Ding, “Monte Carlo simulations of extinction rate of dense media with randomly distributed dielectric spheres based on solution of Maxwell’s equations,” Opt. Lett. 17, 314–316 (1992). [CrossRef]
  35. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-Interscience, 1983).
  36. L. L. Foldy, “The multiple scattering of waves. I. General theory of isotropic scattering by randomly distributed scatterers,” Phys. Rev. 67, 107–119 (1945). [CrossRef]
  37. M. Lax, “Multiple scattering of waves. II. The effective field in dense systems,” Phys. Rev. 85, 621–629 (1952). [CrossRef]
  38. A. G. Fedorov and R. Viskanta, “Radiative transfer in a semitransparent glass foam blanket,” Phys. Chem. Glasses 41, 127–135 (2000).
  39. J. Yin and L. Pilon, “Efficiency factors and radiation characteristics of spherical scatterers in an absorbing medium,” J. Opt. Soc. Am. A 23, 2784–2796 (2006). [CrossRef]
  40. C. M. Soukoulis and S. Datta, “Propagation of classical waves in random media,” Phys. Rev. B 49, 3800–3810 (1994). [CrossRef]
  41. R. Prasher, “Modification of Planck blackbody emissive power and intensity in particulate media due to multiple and dependent scattering,” J. Heat Transfer 127, 903–910(2005). [CrossRef]
  42. R. Prasher, “Thermal radiation in dense nano- and microparticulate media,” J. Appl. Phys. 102, 074316 (2007). [CrossRef]
  43. L. Tsang, J. A. Kong, and R. T. Shin, Theory of Microwave Remote Sensing (Wiley-Interscience, 1985).
  44. V. Twerskyt, “Transparency of pair-correlated, random distributions of small scatterers, with applications to the cornea,” J. Opt. Soc. Am. 65, 524–530 (1975). [CrossRef]
  45. W. C. Mundy, J. A. Roux, and A. M. Smith, “Mie scattering by spheres in an absorbing medium,” J. Opt. Soc. Am. 64, 1593–1597 (1974). [CrossRef]
  46. Q. Fu and W. Sun, “Mie theory for light scattering by a spherical particle in an absorbing medium,” Appl. Opt. 40, 1354–1361 (2001). [CrossRef]
  47. M. Q. Brewster and C. L. Tien, “Examination of the two-flux model for radiative transfer in particular systems,” Int. J. Heat Mass Transf. 25, 1905–1907 (1982). [CrossRef]
  48. R. A. Taylor, P. E. Phelan, T. P. Otanicar, R. Adrian, and R. Prasher, “Nanofluid optical property characterization: towards efficient direct absorption solar collectors,” Nanoscale Res. Lett. 6, 225 (2011). [CrossRef]
  49. G. M. Hale and M. R. Querry, “Optical constants of water in the 200 nm to 200 μm wavelength region,” Appl. Opt. 12, 555–563 (1973). [CrossRef]
  50. “Refractive Index Database,” www.filmetrics.com .
  51. J. Cai, “The optically selective absorbing characteristic of nanofluids,” Ph.D. dissertation (Zhejiang University, 2008).
  52. A. Henglein, “Physicochemical properties of small metal particles in solution: ‘microelectrode’ reactions, chemisorption, composite metal particles, and the atom-to-metal transition,” J. Phys. Chem. 97, 5457–5471 (1993). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited