OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 25 — Sep. 1, 2012
  • pp: 6227–6232

Revisiting twin-core fiber sensors for high-temperature measurements

Patrik Rugeland and Walter Margulis  »View Author Affiliations


Applied Optics, Vol. 51, Issue 25, pp. 6227-6232 (2012)
http://dx.doi.org/10.1364/AO.51.006227


View Full Text Article

Enhanced HTML    Acrobat PDF (727 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A twin-core fiber Michelson interferometer is evaluated as a high-temperature sensor. Although linear and reproducible operation up to 300°C is obtained, at higher temperatures (700°C) the refractive index shifts plastically and hysteresis is observed, rendering an untreated sensor head unusable. The shift is shown to be greatly reduced by an annealing process of the fiber for 10 h at 900°C, with which the linear response is preserved.

© 2012 Optical Society of America

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(060.2310) Fiber optics and optical communications : Fiber optics
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(120.6780) Instrumentation, measurement, and metrology : Temperature

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: June 14, 2012
Revised Manuscript: August 7, 2012
Manuscript Accepted: August 10, 2012
Published: August 30, 2012

Citation
Patrik Rugeland and Walter Margulis, "Revisiting twin-core fiber sensors for high-temperature measurements," Appl. Opt. 51, 6227-6232 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-25-6227


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, “Decay of UV-induced fiber Bragg grating,” J. Appl. Phys. 76, 73–80 (1994). [CrossRef]
  2. M. Fokine, “Thermal stability of chemical composition gratings in fluorine-doped silicate fiber,” Opt. Lett. 27, 1016–1018 (2002). [CrossRef]
  3. A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett. 40, 1170–1172 (2004). [CrossRef]
  4. B. H. Lee, Y. H. Kim, K. S. Park, J. B. Eom, M. J. Kim, B. S. Rho, and H. Y. Choi, “Interferometric fiber optic sensors,” Sensors 12, 2467–2486 (2012). [CrossRef]
  5. W. Eickoff, “Temperature sensing by mode-mode interference in birefringent optical fibers,” Opt. Lett. 6, 204–206 (1981). [CrossRef]
  6. Z. Tian, S. S.-H. Yam, and H.-P. Loock, “Single-mode fiber refractive index sensor based on core-offset attenuators,” IEEE Photon. Technol. Lett. 20, 1387–1389 (2008). [CrossRef]
  7. J.-J. Zhu, A. P. Zhang, T. H. Xia, S. He, and W. Xue, “Fiber-optic high temperature sensor based on thin core fiber modal interferometer,” IEEE Sens. J. 10, 1415–1418(2010). [CrossRef]
  8. L. V. Nguyen, D. Hwang, S. Moon, D. S. Moon, and Y. Chung, “High temperature fiber sensor with high sensitivity based on core diameter mismatch,” Opt. Express 16, 11369–11375 (2008). [CrossRef]
  9. E. Li, X. Wang, and C. Zhang, “Fiber-optic temperature sensor based on interference of selective higher-order modes,” Appl. Phys. Lett. 89, 091119 (2006). [CrossRef]
  10. G. Coviello, V. Finazzi, J. Villatoro, and V. Pruneri, “Thermally stabilized PCF-based sensor for temperature measurements up to 1000°C,” Opt. Express 17, 21551–21559(2009). [CrossRef]
  11. H. Y. Choi, K. S. Park, and B. H. Lee, “Photonic crystal fiber interferometer composed of a long period fiber grating and one point collapsing of air holes,” Opt. Lett. 33, 812–814(2008). [CrossRef]
  12. G. Meltz, J. R. Dunphy, W. W. Morey, and E. Snitzer, “Cross-talk fiber-optic temperature sensor,” Appl. Opt. 22, 464–477 (1983). [CrossRef]
  13. S. Feng, H. Li, O. Xu, S. Lu, and S. Jian, “Compact in-fiber Mach-Zehnder interferometer using a twin-core fiber,” Proc. SPIE 7630, 76301R (2009). [CrossRef]
  14. R. Romaniuk and J. Dorosz, “Temperature sensor based on double core optical fibre,” Proc. SPIE 4887, 55–66(2001). [CrossRef]
  15. B. H. Lee, Y. H. Kim, K. S. Park, J. B. Eom, M. J. Kim, B. S. Rho, and H. Y. Choi, “Interferometric fiber optic sensors,” Sensors 12, 2467–2486 (2012). [CrossRef]
  16. L.-E. Nilsson, Å. Claesson, W. Margulis, and P.-Y. Fonjallaz, “Specialty single-mode fibers: manufacturing multicore fibers,” in Specialty optical fibers handbook, A Méndez and T. F. Morse, eds. (Elsevier, 2007), pp. 182–184.
  17. H. S. Huang and H.-C Chang, “Analysis of optical fiber directional coupling based on the HE11 modes—part I: the identical-core case,” J. Lightwave Technol. 8, 823–831(1990). [CrossRef]
  18. J. H. Wray and J. Y. Neu, “Refractive index of several glasses as a function of wavelength and temperature,” J. Opt. Soc. Am. 59, 774–776 (1969). [CrossRef]
  19. Y. Mohanna, J. M. Saugrain, J. C. Rousseau, and P. Ledox, “Relaxation of internal stresses in optical fibers,” J. Lightwave Technol. 8, 1799–1802 (1990). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited