OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 25 — Sep. 1, 2012
  • pp: 6233–6244

Development of a high spectral resolution lidar based on confocal Fabry–Perot spectral filters

David S. Hoffman, Kevin S. Repasky, John A. Reagan, and John L. Carlsten  »View Author Affiliations

Applied Optics, Vol. 51, Issue 25, pp. 6233-6244 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (883 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The high spectral resolution lidar (HSRL) instrument described in this paper utilizes the fundamental and second-harmonic output from an injection seeded Nd:YAG laser as the laser transmitter. The light scattered in the atmosphere is collected using a commercial Schmidt-Cassegrain telescope with the optical receiver train first splitting the fundamental and second-harmonic return signal with the fundament light monitored using an avalanche photodiode. The second-harmonic return signal is mode matched into a tunable confocal Fabry–Perot (CFP) interferometer with a free spectral range of 7.5 GHz and a finesse of 50.7 (312) at 532 nm (1064 nm) placed in the optical receiver for spectrally filtering the molecular and aerosol return signals. The light transmitted through the CFP is used to monitor the aerosol return signal while the light reflected from the CFP is used to monitor the molecular return signal. Data collected with the HSRL are presented and inversion results are compared to a co-located solar radiometer, demonstrating the successful operation of the instrument. The CFP-based filtering technique successfully employed by this HSRL instrument is easily portable to other arbitrary wavelengths, thus allowing for the future development of multiwavelength HSRL instruments.

© 2012 Optical Society of America

OCIS Codes
(280.1100) Remote sensing and sensors : Aerosol detection
(280.1310) Remote sensing and sensors : Atmospheric scattering

ToC Category:
Remote Sensing and Sensors

Original Manuscript: April 6, 2012
Revised Manuscript: July 20, 2012
Manuscript Accepted: July 27, 2012
Published: August 31, 2012

David S. Hoffman, Kevin S. Repasky, John A. Reagan, and John L. Carlsten, "Development of a high spectral resolution lidar based on confocal Fabry–Perot spectral filters," Appl. Opt. 51, 6233-6244 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Forster, V. Ramaswamy, P. Artaxo, T. Berntsen, R. Betts, D. W. Fahey, J. Haywood, J. Lean, D. C. Lowe, G. Mhhre, J. Nganga, R. Prinn, G. Raga, M. Schulz, and R. Van Dorland, “Changes in atmospheric constituents and in radiative forcing,” in Climate Change 2007: The Physical Science Basis. Contributions of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, and H. L. Miller, eds. (Cambridge University, 2007).
  2. J. Haywood and O. Boucher, “Estimates of the direct and indirect radiaitve forcing due to tropospheric aerosols: A review,” Rev. Geophys. 38, 513–543 (2000). [CrossRef]
  3. K. P. Shine, M. Piers, and F. Forster, “The effect of human activity on radiative forcing of climate change: a review of recent development,” Glob. Planet. Change 20, 205–225 (1999). [CrossRef]
  4. H. Y. Yu, J. Kaufman, M. Chin, G. Feingold, L. A. Remer, T. L. Anderson, Y. Balkanski, N. Bellouin, O. Boucher, S. Christopher, P. deCola, D. Koch, N. Loeb, M. S. Reddy, M. Schulz, T. Takamura, and M. Zhou, “A review of measurement-based assessments of the aerosol direct radiative effect and forcing,” Atmos. Chem. Phys. 6, 613–666 (2006). [CrossRef]
  5. J. E. Penner, M. Andreae, H. Annegarn, L. Barrie, J. Feichter, D. Hegg, A. Jayaraman, R. Leaitch, D. Murphy, J. Nganga, G. Pitari, A. Ackerman, P. Adams, P. Austin, R. Boers, O. Boucher, M. Chin, C. Chuang, B. Collins, W. Cooke, P. DeMott, Y. Feng, H. Fischer, I. Fung, S. Ghan, P. Ginoux, S.-L. Gong, A. Guenther, M. Herzog, A. Higurashi, Y. Kaufman, A. Kettle, J. Kiehl, D. Koch, G. Lammel, C. Land, U. Lohmann, S. Madronich, E. Mancini, M. Mishchenko, T. Nakajima, P. Quinn, P. Rasch, D. L. Roberts, D. Savoie, S. Schwartz, J. Seinfeld, B. Soden, D. Tanré, K. Taylor, I. Tegen, X. Tie, G. Vali, R. Van Dingenen, M. van Weele, and Y. Zhang, “Aerosols, their direct and indirect effects,” in Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, J. T. Houghton, Y. Ding, D. J. Griggs, M. Nogeur, P. J. van der Linden, X. Dai, K. Maskell, and C. A. Johnson, eds (Cambridge University, 2001).
  6. S. Twomey, “The influence of pollution on the shortwave albedo of clouds,” J. Atmos. Sci. 34, 1149–1152 (1977). [CrossRef]
  7. U. Lohmann and J. Feichter, “Global indirect aerosol effects: a review,” Atmos. Chem. Phys. 5, 715–737 (2005). [CrossRef]
  8. G. McFiggans, P. Artaxo, U. Baltensperger, H. Coe, M. C. Facchini, G. Feingold, S. Fuzzi, M. Gysel, A. Laaksonem, U. Lohmann, T. F. Mentel, D. M. Murphy, C. D. O’Dowd, J. R. Snider, and E. Weingartner, “The effect of physical and chemical aerosol properties on warm cloud droplet activation,” Atmos. Chem. Phys. 6, 2593–2649 (2006). [CrossRef]
  9. J. D. Klett, “Stable analytical inversion solution for processing lidar returns,” Appl. Opt. 20, 211–220 (1981). [CrossRef]
  10. F. G. Fernald, B. M. Herman, and J. A. Reagan, “Determination of aerosol height distributions by lidar,” J. Appl. Meterol. 11, 482–489 (1972). [CrossRef]
  11. F. G. Fernald, “Analysis of atmospheric lidar applications: some comments,” Appl. Opt. 23, 652–653 (1984). [CrossRef]
  12. R. J. Alvarez, L. M. Caldwell, Y. H. Li, D. A. Krueger, and C. Y. She, “High spectral resolution measurements of tropospheric backscatter ratio using barium atomic blocking filters,” Appl. Opt. 7, 876–881 (1990). [CrossRef]
  13. C. J. Grund and E. W. Eloranta, “University of Wisconsin high spectral resolution lidar,” Opt. Eng. 30, 6–12 (1991). [CrossRef]
  14. P. Piironen and E. W. Eloranta, “Demonstration of a high spectral resolution lidar based on an iodine absorption filter,” Opt. Lett. 19, 234–236 (1994). [CrossRef]
  15. M. Esselborn, M. Wirth, A. Fix, M. Tesche, and G. Ehret, “Airborne high spectral resolution lidar for measuring aerosol extinction and backscatter coefficients,” Appl. Opt. 47, 346–358 (2008). [CrossRef]
  16. J. W. Hair, L. M. Caldwell, D. A. Krueger, and C.-Y. She, “High spectral resolution lidar with iodine vapor filters: measurement of atmospheric state and aerosol profiles,” Appl. Opt. 40, 5280–5295 (2001). [CrossRef]
  17. J. W. Hair, C. A. Hostetler, A. L. Cook, D. B. Harper, R. A. Ferrare, T. L. Mack, W. Welch, L. R. Izquierdo, and F. E. Hovis, “Airborne high spectral resolution lidar for profiling aerosol optical properties,” Appl. Opt. 47, 6734–6753 (2008). [CrossRef]
  18. D. Hua, M. Uchida, and T. Kobayashi, “Ultraviolet high spectral resolution Rayleigh Mie lidar with a dual pass Fabry–Perot etalon for measuring atmospheric temperature profiles in the troposphere,” Opt. Lett. 29, 1063–1065 (2004). [CrossRef]
  19. M. Imaki and T. Kobayashi, “Ultraviolet high spectral resolution Doppler lidar for measuring wind field and aerosol optical properties,” Appl. Opt. 44, 6023–6030 (2005). [CrossRef]
  20. Z. Liu, I. Matsui, and N. Sugimoto, “High spectral resolution lidar using an iodine absorption filter for atmospheric measurements,” Opt. Eng. 38, 1661–1670 (1999). [CrossRef]
  21. C. Y. She, R. J. Alvarez, L. M. Caldwell, and D. A. Krueger, “High spectral resolution Rayleigh-Mie lidar measurement of aerosol and atmospheric profiles,” Opt. Lett. 17, 541–543 (1992). [CrossRef]
  22. S. T. Shipley, D. H. Tracy, E. W. Eloranta, J. T. Trauger, J. T. Sroga, F. L. Roesler, and J. A. Weinman, “High spectral resolution lidar to measure optical scattering properties of atmospheric aerosols. 1: Theory and instrumentation,” Appl. Opt. 22, 3716–3724 (1983). [CrossRef]
  23. J. T. Sroga, E. W. Eloranta, S. T. Shipley, F. L. Roesler, and P. J. Tryon, “High spectral resolution lidar to measure optical scattering properties of atmospheric aerosols. 2: Calibration and data analysis,” Appl. Opt. 22, 3725–3732 (1983). [CrossRef]
  24. H. Shimizu, S. A. Lee, and C. Y. She, “High spectral resolution lidar system with atomic blocking filters for measuring atmospheric parameters,” Appl. Opt. 22, 1373–1381 (1983). [CrossRef]
  25. Z. Liu, N. Sugimoto, and T. Murayama, “Extinction to backscatter ratio of Asian dust observed with high spectral resolution lidar and Raman lidar,” Appl. Opt. 41, 2760–2767 (2002). [CrossRef]
  26. M. Imaki, Y. Takegoshi, and T. Kobayashi, “Ultraviolet high-spectral-resolution lidar with Fabry–Perot filter for accurate measurement of extinction and lidar ratio,” Jpn. J. Appl. Phys. 44, 3063–3067 (2005). [CrossRef]
  27. T. Nishizawa, N. Sugimoto, and I. Matsui, “Development of a dual-wavelength high-spectral-resolution lidar,” Proc. SPIE 7860, 78600D (2010). [CrossRef]
  28. M. Hercher, “The spherical mirror Fabry–Perot interferometer,” Appl. Opt. 7, 951–966 (1968). [CrossRef]
  29. J. R. Johnson, “A high resolution scanning confocal interferometer,” Appl. Opt. 7, 1061–1072 (1968). [CrossRef]
  30. C. R. Munnerlyn and J. W. Balliett, “Alignment requirements for mode matching in a confocal Fabry–Perot interferometer,” Appl. Opt. 9, 2535–2538 (1970). [CrossRef]
  31. G. A. Gary, C. Pietraszewski, E. A. West, and T. C. Dines, “Solar confocal interferometers for sub-picometer-resolution spectral filters,” Astron. Astrophys. 467, 375–383 (2007). [CrossRef]
  32. G. D. Boyd and J. P. Gordon, “Confocal multimode resonator for millimeter through optical wavelength masers,” Bell Syst. Tech. J. 40, 453–508 (1961).
  33. K. A. Neal, “A confocal Fabry-Perot interferometer for use in lidar receivers,” M. S. thesis (Montana State University, 2009).
  34. The laser used in the HSRL is a Continuum Seeded Surelite 1-10 laser.
  35. K. S. Repasky, L. E. Watson, and J. L. Carlsten, “High finesse interferometers,” Appl. Opt. 34, 2615–2618 (1995). [CrossRef]
  36. A. E. Siegman, Lasers (University Science, 1986), pp. 160–175.
  37. C. K. Carniglia, L. Mandel, and K. H. Drexhage, “Absorption and emission of evanescent photons,” J. Opt. Soc. Am. 62, 479–486 (1972). [CrossRef]
  38. J. M. Wallace and P. V. Hobbs, Atmospheric Science: An Introductory Survey, 2nd Ed. (Elsevier, 2006).
  39. V. A. Kovalev and W. E. Eichinger, Elastic Lidar, Theory, Practice, and Analysis Methods (Wiley, 2004).
  40. J. A. Reagan and M. T. Osborn, “Spaceborne lidar calibration from cirrus and molecular backscatter returns,” IEEE Trans. Geoscience Remote Sens. 40, 2285–2290 (2002). [CrossRef]
  41. A. R. Nehrir, “Development of an eye-safe diode laser based micro-pulse differential absorption lidar (MP-DIAL) for atmospheric water vapor and aerosol studies,” Ph. D. Thesis (Montana State University, 2011).
  42. B. N. Holben, D. Tanre, A. Smirnov, T. F. Eck, I. Slutsker, N. Abuhassan, W. W. Newcomb, J. S. Schafer, B. Chatenet, F. Lavenu, Y. J. Kaufman, J. Vande Castle, A. Setzer, B. Markham, D. Clark, R. Frouin, R. Halthore, A. Karneli, N. T. O’Neill, C. Pietras, R. T. Pinker, K. Voss, and G. Zibordi, “An emerging ground-based aerosol climatology: Aerosol optical depth from AERONET,” J. Geophys. Res. 106, 12,067–12,097 (2001). [CrossRef]
  43. A. R. Nehrir, K. S. Repasky, J. A. Reagan, and J. L. Carlsten, “Optical characterization of continental and biomass burning aerosols over Bozeman Montana: A case study of the aerosol direct effect,” J. Geophys. Res. 116, D21201 (2011). [CrossRef]
  44. C. Cattrall, J. Reagan, K. Thome, and O. Dubovik, “Variability of aerosol and spectral lidar and backscatter and extinction ratios for key aerosol types derived from selected Aerosol Robotic Network locations,” J. Geophys. Res. 110, D10S11 (2005). [CrossRef]
  45. K. Repasky, J. Reagan, A. Nehrir, D. Hoffman, M. Thomas, J. Carlsten, J. Shaw, and G. Shaw, “Observational studies of aerosols over Bozeman, Montana, using a two-color lidar, a water vapor DIAL, a solar radiometer and a ground-based nephelometer over a 24-hour period,” J. Atmos. Ocean. Technol. 28, 320–336 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited