OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 26 — Sep. 10, 2012
  • pp: 6361–6367

Temperature sensor based on surface plasmon resonance within selectively coated photonic crystal fiber

Yang Peng, Jing Hou, Zhihe Huang, and Qisheng Lu  »View Author Affiliations

Applied Optics, Vol. 51, Issue 26, pp. 6361-6367 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (722 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate a temperature sensor based on surface plasmon resonances supported by photonic crystal fibers (PCFs). Within the PCF, to enhance the sensitivity of the sensor, the air holes of the second layer are filled with a large thermo-optic coefficient liquid and some of those air holes are selectively coated with metal. Temperature variations will induce changes of coupling efficiencies between the fundamental core mode and the plasmonic mode, thus leading to different loss spectra that will be recorded. In this paper, variations of the dielectric constants of all components, including the metal, the filled liquid, and the fused silica, are considered. We conduct numerical calculations to analyze the mode profile and evaluate the power loss, demonstrating a temperature sensitivity as high as 720pm/°C.

© 2012 Optical Society of America

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(240.6680) Optics at surfaces : Surface plasmons
(060.4005) Fiber optics and optical communications : Microstructured fibers
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:
Optics at Surfaces

Original Manuscript: May 31, 2012
Revised Manuscript: August 14, 2012
Manuscript Accepted: August 16, 2012
Published: September 7, 2012

Yang Peng, Jing Hou, Zhihe Huang, and Qisheng Lu, "Temperature sensor based on surface plasmon resonance within selectively coated photonic crystal fiber," Appl. Opt. 51, 6361-6367 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).
  2. R. Jorgenson and S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sens. Actuators B 12, 213–220 (1993). [CrossRef]
  3. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3–15 (1999). [CrossRef]
  4. B. Lee, S. Roh, and J. Park, “Current status of micro-and nano-structured optical fiber sensors,” Opt. Fiber Technol. 15, 209–221 (2009). [CrossRef]
  5. A. K. Sharma and B. D. Gupta, “Theoretical model of a fiber optic remote sensor based on surface plasmon resonance for temperature detection,” Opt. Fiber Technol. 12, 87–100 (2006). [CrossRef]
  6. P. Russell, “Photonic crystal fibers,” Science 299, 358–362 (2003). [CrossRef]
  7. J. C. Knight, “Photonic crystal fibres,” Nature 424, 847–851 (2003). [CrossRef]
  8. C. G. Poulton, M. A. Schmidt, G. J. Pearce, G. Kakarantzas, and P. S. Russell, “Numerical study of guided modes in arrays of metallic nanowires,” Opt. Lett. 32, 1647–1649 (2007). [CrossRef]
  9. J. Hou, D. Bird, A. George, S. Maier, B. Kuhlmey, and J. C. Knight, “Metallic mode confinement in microstructured fibres,” Opt. Express 16, 5983–5990 (2008). [CrossRef]
  10. M. A. Schmidt, L. N. P. Sempere, H. K. Tyagi, C. G. Poulton, and P. S. J. Russell, “Waveguiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires,” Phys. Rev. B 77, 033417 (2008). [CrossRef]
  11. P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, and E. R. Margine, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311, 1583–1586 (2006). [CrossRef]
  12. J. A. Harrington, “A review of IR transmitting, hollow waveguides,” Fiber Integr. Opt. 19, 211–227 (2000). [CrossRef]
  13. A. Hassani, and M. Skorobogatiy, “Design of the microstructured optical fiber-based surface plasmon resonance sensors with enhanced microfluidics,” Opt. Express 14, 11616–11621 (2006). [CrossRef]
  14. X. Yu, Y. Zhang, S. Pan, P. Shum, M. Yan, Y. Leviatan, and C. Li, “A selectively coated photonic crystal fiber based surface plasmon resonance sensor,” J. Opt. 12, 015005 (2010). [CrossRef]
  15. X. Zhang, R. Wang, F. M. Cox, B. T. Kuhlmey, and M. C. Large, “Selective coating of holes in microstructured optical fiber and its application to in-fiber absorptive polarizers,” Opt. Express 15, 16270–16278 (2007). [CrossRef]
  16. S. J. Qiu, Y. Chen, F. Xu, and Y. Q. Lu, “Temperature sensor based on an isopropanol-sealed photonic crystal fiber in-line interferometer with enhanced refractive index sensitivity,” Opt. Lett. 37, 863–865 (2012). [CrossRef]
  17. N. Liu, Y. Li, Y. Wang, H. Wang, W. Liang, and P. Lu, “Bending insensitive sensors for strain and temperature measurements with Bragg gratings in Bragg fibers,” Opt. Express 19, 13880–13891 (2011). [CrossRef]
  18. S. K. Srivastava and B. D. Gupta, “Simulation of a localized surface-plasmon-resonance-based fiber optic temperature sensor,” J. Opt. Soc. Am. A 27, 1743–1749 (2010). [CrossRef]
  19. S. J. Al-Bader and M. Imtaar, “Optical fiber hybrid-surface plasmon polaritons,” J. Opt. Soc. Am. B 10, 83–88 (1993). [CrossRef]
  20. U. Schröter and A. Dereux, “Surface plasmon polaritons on metal cylinders with dielectric core,” Phys. Rev. B 64, 125420 (2001). [CrossRef]
  21. G. Ghosh, M. Endo, and T. Iwasaki, “Temperature-dependent Sellmeier coefficients and chromatic dispersions for some optical fiber glasses,” J. Lightwave Technol. 12, 1338–1342 (1994). [CrossRef]
  22. P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6, 4370–4379 (1972). [CrossRef]
  23. K. Lin, Y. Lu, Z. Luo, R. Zheng, P. Wang, and H. Ming, “Numerical and experimental investigation of temperature effects on the surface plasmon resonance sensor,” Chin. Opt. Lett. 7, 428–431 (2009). [CrossRef]
  24. R. Beach and R. Christy, “Electron-electron scattering in the intraband optical conductivity of Cu, Ag, and Au,” Phys. Rev. B 16, 5277 (1977). [CrossRef]
  25. W. E. Lawrence, “Electron-electron scattering in the low-temperature resistivity of the noble metals,” Phys. Rev. B 13, 5316–5319 (1976). [CrossRef]
  26. T. Holstein, “Optical and infrared volume absorptivity of metals,” Phys. Rev. 96, 535 (1954). [CrossRef]
  27. K. Ujihara, “Reflectivity of metals at high temperatures,” J. Appl. Phys. 43, 2376–2383 (1972). [CrossRef]
  28. S. Herminghaus and P. Leiderer, “Surface plasmon enhanced transient thermoreflectance,” Appl. Phys. A 51, 350–353 (1990). [CrossRef]
  29. M. A. R. Franco, V. A. Serrão, and F. Sircilli, “Side-polished microstructured optical fiber for temperature sensor application,” IEEE Photon. Technol. Lett. 19, 1738–1740 (2007). [CrossRef]
  30. M. J. Weber, Handbook of Optical Materials (CRC Press, 2003).
  31. B. Gauvreau, A. Hassani, M. Fassi Fehri, A. Kabashin, and M. A. Skorobogatiy, “Photonic bandgap fiber-based surface plasmon resonance sensors,” Opt. Express 15, 11413–11426(2007). [CrossRef]
  32. L. J. Sherry, S. H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5, 2034–2038 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited