OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 27 — Sep. 20, 2012
  • pp: 6441–6447

Closed-form suboptimal maximum-likelihood sequence detection for free-space optical communications

Lu Zhang and Zhiyong Wu  »View Author Affiliations


Applied Optics, Vol. 51, Issue 27, pp. 6441-6447 (2012)
http://dx.doi.org/10.1364/AO.51.006441


View Full Text Article

Enhanced HTML    Acrobat PDF (374 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper, a closed-form suboptimal maximum-likelihood sequence detection (MLSD) metric and its low-complexity version are proposed for free space optical communications systems operating over lognormal fading and high signal-to-noise channel. This algorithm provides a simplification to the algorithm reported by Riediger et al. In comparison, firstly, the parameters of this algorithm are independent of the scintillation index’s variation, and secondly this algorithm just contains conventional computations; it saves computational time significantly. Bit error rate performance results confirm that the proposed algorithm performs comparably well as optimal MLSD. Moreover, the low-complexity version of this algorithm consumes much less time than the previously suboptimal MLSD metric presented by Riediger et al.

© 2012 Optical Society of America

OCIS Codes
(010.1330) Atmospheric and oceanic optics : Atmospheric turbulence
(040.1880) Detectors : Detection
(060.2605) Fiber optics and optical communications : Free-space optical communication

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: June 27, 2012
Revised Manuscript: August 9, 2012
Manuscript Accepted: August 9, 2012
Published: September 11, 2012

Citation
Lu Zhang and Zhiyong Wu, "Closed-form suboptimal maximum-likelihood sequence detection for free-space optical communications," Appl. Opt. 51, 6441-6447 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-27-6441


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Uysal, S. M. Navidpour, and J. Li, “Error rate performance of coded free-space optical links over strong turbulence channels,” IEEE Commun. Lett. 8, 635–637 (2004). [CrossRef]
  2. M. K. Simon and V. A. Vilnrotter, “Alamouti-type space-time coding for free-space optical communication with direct detection,” IEEE Trans. Wireless Commun. 4, 35–39 (2005). [CrossRef]
  3. M. Jazayerifar and J. A. Salehi, “Atmospheric optical CDMA communication systems via optical orthogonal codes,” IEEE Trans. Commun. 54, 1614–1623 (2006). [CrossRef]
  4. M. Uysal, J. Li, and M. Yu, “Error rate performance analysis of coded free-space optical links over gamma-gamma atmospheric turbulence channels,” IEEE Trans. Wireless Commun. 5, 1229–1233 (2006). [CrossRef]
  5. M. Cole and K. Kiasaleh, “Signal intensity estimators for free-space optical communications through turbulent atmosphere,” IEEE Photon. Technol. Lett. 16, 2395–2397 (2004). [CrossRef]
  6. M. Cole and K. Kiasaleh, “Signal intensity estimators for free-space optical communication with array detector,” IEEE Trans. Commun. 55, 2341–2350 (2007). [CrossRef]
  7. A. Khatoon, W. G. Cowley, and N. Letzepis, “Channel measurement and estimation for free space optical communications,” in Proceedings of IEEE Conference on Communication Theory Workshop (IEEE, 2011), pp. 112–117.
  8. A. Komaee, “Channel estimation for free-space optical communication,” in Proceedings of IEEE Conference on Decision and Control and European Control (IEEE, 2011), pp. 7299–7304.
  9. A. Komaee, “Detection and channel estimation for optical communication over atmospheric turbulent channels,” in Proceedings of IEEE Conference on Information Sciences and Systems (IEEE, 2011), pp. 1–6.
  10. X. Zhu and J. M. Kahn, “Pilot-symbol assisted modulation for correlated turbulent free-space optical channels,” Proc. SPIE 4489, 138–145 (2001).
  11. H. Moradi, H. H. Refai, and P. G. LoPresti, “Thresholding-based optimal detection of wireless optical signals,” J. Opt. Commun. Netw. 2, 689–700 (2010). [CrossRef]
  12. H. Moradi, H. H. Refai, P. G. LoPresti, and M. Atiquzzaman, “A PSAM-based estimator of noise and fading statistics for optimum receivers of free space optics signals,” Proc. SPIE 7587, 1–10 (2010).
  13. M. Cole and K. Kiasaleh, “Receiver architectures for the detection of spatially correlated optical field using avalanche photodiode detector arrays,” Opt. Eng. 47, 1–15(2008). [CrossRef]
  14. M. L. B. Riediger, R. Schober, and L. Lampe, “Fast multiple-symbol detection for free-space optical communications,” IEEE Trans. Commun. 57, 1119–1128 (2009). [CrossRef]
  15. M. L. B. Riediger, R. Schober, and L. Lampe, “Multiple-symbol detection for photon-counting MIMO free-space optical communications,” IEEE Trans. Wireless Commun. 7, 5369–5379 (2008). [CrossRef]
  16. N. D. Chatzidiamantis, G. K. Karagiannidis, and M. Uysal, “Generalized maximum-likelihood sequence detection for photon-counting free space optical systems,” IEEE Trans. Commun. 58, 3381–3385 (2010). [CrossRef]
  17. X. Zhu and J. M. Kahn, “Free-space optical communication through atmospheric turbulence channels,” IEEE Trans. Commun. 50, 1293–1300 (2002). [CrossRef]
  18. X. Zhu and J. M. Kahn, “Markov chain model in maximum-likelihood sequence detection for free-space optical communication through atmospheric turbulence channels,” IEEE Trans. Commun. 51, 509–516 (2003). [CrossRef]
  19. H. R. Burris, N. M. Namazi, A. E. Reed, W. J. Scharpf, C. I. Moore, M. J. Vilcheck, M. A. Davis, M. F. Stell, M. R. Suite, W. S. Rabinovich, and R. Mahon, “A comparison of adaptive methods for optimal thresholding for free-space optical communication receivers with multiplicative noise,” Proc. SPIE 4821, 139–154 (2002). [CrossRef]
  20. I. N. Bronshtein, K. A. Semendyayev, G. Musiol, and H. Muehlig, Handbook of Mathematics, 5th ed. (Springer, 2005).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited