OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 27 — Sep. 20, 2012
  • pp: 6480–6483

Angular amplification by a diffraction grating for chiro-optical measurements

Rajitha Papukutty Rajan and Ambarish Ghosh  »View Author Affiliations


Applied Optics, Vol. 51, Issue 27, pp. 6480-6483 (2012)
http://dx.doi.org/10.1364/AO.51.006480


View Full Text Article

Enhanced HTML    Acrobat PDF (367 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The angles at which a light beam gets diffracted by a grating depend strongly on the direction of incidence for diffraction angles close to a right angle. Accordingly, it is possible to amplify small beam deflections by placing a grating at an optimal orientation to the light path. We use this principle to amplify small beam deviations arising out of a light beam refracting at the interface of an optically active medium, and demonstrate a new technique of enhancing the limit of detection of chiro-optical measurements.

© 2012 Optical Society of America

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(120.3930) Instrumentation, measurement, and metrology : Metrological instrumentation
(120.5410) Instrumentation, measurement, and metrology : Polarimetry
(120.5710) Instrumentation, measurement, and metrology : Refraction
(260.1440) Physical optics : Birefringence
(160.1585) Materials : Chiral media

ToC Category:
Diffraction and Gratings

History
Original Manuscript: July 2, 2012
Revised Manuscript: August 15, 2012
Manuscript Accepted: August 20, 2012
Published: September 11, 2012

Citation
Rajitha Papukutty Rajan and Ambarish Ghosh, "Angular amplification by a diffraction grating for chiro-optical measurements," Appl. Opt. 51, 6480-6483 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-27-6480


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Rohlin, “An interferometer for precision angle measurements,” Appl. Opt. 2, 762–763 (1963). [CrossRef]
  2. D. Malacara and O. Harris, “Interferometric measurements of angle,” Appl. Opt. 9, 1630–1633 (1970). [CrossRef]
  3. G. D. Chapman, “Interferometric angular measurement,” Appl. Opt. 13, 1646–1651 (1974). [CrossRef]
  4. P. S. Huang, S. Kiyono, and O. Kamada, “Angle measurement based on the internal-reflection effect: a new method,” Appl. Opt. 31, 6047–6055 (1992). [CrossRef]
  5. P. S. Huang and J. Ni, “Angle measurement based on the internal-reflection effect and the use of right-angle prisms,” Appl. Opt. 34, 4976–4981 (1995). [CrossRef]
  6. P. S. Huang and J. Ni, “Angle measurement based on the internal-reflection effect using elongated critical-angle prisms,” Appl. Opt. 35, 2239–2241 (1996). [CrossRef]
  7. G. D’Emilia and F. Iaconis, “A simple fiber optic sensor for angle measurement,” in Instrumentation and Measurement Technology Conference (IEEE, 1994), pp. 295–299.
  8. C. Wu, “Fiber optic angular displacement sensor,” Rev. Sci. Instrum. 66, 3672–3675 (1995). [CrossRef]
  9. D. Sagrario and P. Mead, “Axial and angular displacement fiber-optic sensor,” Appl. Opt. 37, 6748–6754 (1998). [CrossRef]
  10. G. Margheri, A. Mannoni, and F. Quercioli, “High-resolution angular and displacement sensing based on excitation of surface plasma waves,” Appl. Opt. 36, 4521–4525 (1997). [CrossRef]
  11. J. Guo, Z. Zhu, W. Deng, and S. Shen, “Angle measurement using surface-plasmon resonance heterodyne interferometry: a new method,” Opt. Eng. 37, 2998–3001 (1998). [CrossRef]
  12. J. Guo, Z. Zhu, and W. Deng, “Small-angle measurement based on surface-plasmon resonance and the use of magneto-optical modulation,” Appl. Opt. 38, 6550–6555 (1999). [CrossRef]
  13. Y. Aharonov, D. Z. Albert, and L. Vaidman, “How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100,” Phys. Rev. Lett. 60, 1351–1354 (1988). [CrossRef]
  14. P. B. Dixon, D. J. Starling, A. N. Jordan, and J. C. Howel, “Ultrasensitive beam deflection measurement via interferometric weak value amplification,” Phys. Rev. Lett. 102, 173601 (2009). [CrossRef]
  15. A. Ghosh and P. Fischer, “Chiral molecules split light: reflection and refraction in a chiral liquid,” Phys. Rev. Lett. 97, 173002 (2006). [CrossRef]
  16. R. P. Rajan and A. Ghosh, “Enhancement of circular differential deflection of light in an optically active medium,” Opt. Lett. 37, 1232–1234 (2012). [CrossRef]
  17. A. Ghosh, F. M. Fazal, and P. Fischer, “Circular differential double diffraction in chiral media,” Opt. Lett. 32, 1836–1838(2007). [CrossRef]
  18. M. Pfeifer and P. Fischer, “Weak value amplified optical activity measurements,” Opt. Express 19, 16508–16517 (2011). [CrossRef]
  19. A. Ghosh, W. Hill, and P. Fischer, “Observation of the Faraday effect via beam deflection in a longitudinal magnetic field,” Phys. Rev. A 76, 055402 (2007). [CrossRef]
  20. C. A. J. Putman, B. G. D. Grooth, N. F. V. Hulst, and J. Greve, “A detailed analysis of the optical beam deflection technique for use in atomic force microscopy,” J. Appl. Phys. 72, 6–12 (1992). [CrossRef]
  21. A. Garcıa-Valenzuela, G. E. Sandoval-Romero, and C. Sanchez-Perez, “High-resolution optical angle sensors: approaching the diffraction limit to the sensitivity,” Appl. Opt. 43, 4311–4321 (2004). [CrossRef]
  22. J. P. Weber, “Device design using Gaussian beams and ray matrices in planar optics,” IEEE J. Quantum Electron. 30, 2407–2416 (1994). [CrossRef]
  23. D. J. Starling, P. B. Dixon, A. N. Jordan, and J. C. Howell, “Optimizing the signal-to-noise ratio of a beam-deflection measurement with interferometric weak values,” Phys. Rev. A 80, 041803(R) (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited