OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 27 — Sep. 20, 2012
  • pp: 6606–6611

Micro-optical elements fabricated by metal-transparent-metallic-oxides grayscale photomasks

Jianming Zhang, Chuanfei Guo, Yongsheng Wang, Junjie Miao, Ye Tian, and Qian Liu  »View Author Affiliations

Applied Optics, Vol. 51, Issue 27, pp. 6606-6611 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (650 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



One-step gray-tone lithography is the most effective approach to making three-dimensional (3D) micro-optical elements (MOEs). Metal-transparent-metallic-oxide (MTMO) grayscale masks are novel and quite cost effective. In this paper, through the successful fabrication of 3D SiO2 MOEs by gray-tone lithography and reactive ion etching, we thoroughly investigate the practical technique needs of MTMO grayscale masks on metallic nanofilms. Design calibration, pattern transfer, resolution, lifetime, and mask protection of grayscale masks have been verified. This work shows that the MTMO grayscale photomask has good practical applicability in the laboratory and in industry.

© 2012 Optical Society of America

OCIS Codes
(050.1970) Diffraction and gratings : Diffractive optics
(160.4236) Materials : Nanomaterials
(310.6845) Thin films : Thin film devices and applications
(110.6895) Imaging systems : Three-dimensional lithography

ToC Category:
Optical Design and Fabrication

Original Manuscript: June 20, 2012
Revised Manuscript: July 27, 2012
Manuscript Accepted: August 25, 2012
Published: September 18, 2012

Jianming Zhang, Chuanfei Guo, Yongsheng Wang, Junjie Miao, Ye Tian, and Qian Liu, "Micro-optical elements fabricated by metal-transparent-metallic-oxides grayscale photomasks," Appl. Opt. 51, 6606-6611 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Reimer, H. J. Quenzer, M. Jürss, and B. Wagner, “Micro-optic fabrication using one-level gray-tone lithography,” Proc. SPIE 3008, 279–288 (1997). [CrossRef]
  2. J. D. Rogers, A. H. O. Kärkkäinen, T. Tkaczyk, J. T. Rantala, and M. R. Descour, “Realization of refractive microoptics through grayscale lithographic patterning of photosensitive hybrid glass,” Opt. Express 12, 1294–1303 (2004). [CrossRef]
  3. M. Christophersen and B. F. Phlips, “Gray-tone lithography using an optical diffuser and a contact aligner,” Appl. Phys. Lett. 92, 194102 (2008). [CrossRef]
  4. M. C. Gather, N. M. Kronenberg, and K. Meerholz, “Monolithic integration of multi-color organic LEDs by grayscale lithography,” Adv. Mater. 22, 4634–4638 (2010). [CrossRef]
  5. H. C. Yeh, Y. C. Kuo, S. H. Lin, J. D. Lin, T. S. Mo, and S. Y. Huang, “Optically controllable and focus-tunable Fresnel lens in azo-dye-doped liquid crystals using a Sagnac interferometer,” Opt. Lett. 36, 1311–1313 (2011). [CrossRef]
  6. W. X. Yu, X. C. Yuan, N. Q. Ngo, W. X. Que, W. C. Cheong, and V. Koudriachov, “Single-step fabrication of continuous surface relief micro-optical elements in hybrid sol-gel glass by laser direct writing,” Opt. Express 10, 443–448 (2002), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-10-10-443 .
  7. L. Li and A. Y. Yi, “Design and fabrication of a freeform microlens array for a compact large-field-of-view compound-eye camera,” Appl. Opt. 51, 1843–1852 (2012). [CrossRef]
  8. C. H. Chu, C. D. Shiue, H. W. Cheng, M. L. Tseng, H. Chiang, M. Mansuripur, and D. P. Tsai, “Laser-induced phase transitions of Ge2Sb2Te5 thin films used in optical and electronic data storage and in thermal lithography,” Opt. Express 18, 18383–18393 (2010). [CrossRef]
  9. H. Xi, Q. Liu, Y. Tian, Y. Wang, S. Guo, and M. Chu, “Ge2Sb1.5Bi0.5Te5 thin film as inorganic photoresist,” Opt. Mater. Express 2, 461–468 (2012). [CrossRef]
  10. Y. Wang, R. Wang, C. Guo, J. Miao, Y. Tian, T. Ren, and Q. Liu, “Path-directed and maskless fabrication of ordered TiO2nanoribbons,” Nanoscale 4, 1545–1548 (2012). [CrossRef]
  11. C. F. Guo, S. Cao, P. Jiang, Y. Fang, J. Zhang, Y. Fan, Y. Wang, W. Xu, Z. Zhao, and Q. Liu, “Grayscale photomask fabricated by laser direct writing in metallic nano-films,” Opt. Express 17, 19981–19987 (2009). [CrossRef]
  12. C. K. Wu, “Method of making high energy beam sensitive glasses,” U.S. patent 5,078,771 (7Jan.1992).
  13. C. K. Wu, “Gray scale all-glass photomasks,” U.S. patent application 20050053844 A1 (10March2005).
  14. G. Gal, “Method for fabricating microlenses,” U.S. patent 5,310,623 (10May1994).
  15. C. F. Guo, J. Zhang, J. Miao, Y. Fan, and Q. Liu, “MTMO grayscale photomask,” Opt. Express 18, 2621–2631 (2009). [CrossRef]
  16. C. M. Waits, A. Modafe, and R. Ghodssi, “Investigation of gray-scale technology for large area 3D silicon MEMS structures,” J. Micromech. Microeng. 13, 170–177 (2003). [CrossRef]
  17. C. Chen, D. Hirdes, and A. Folch, “Gray-scale photolithography using microfluidic photomasks,” Proc. Natl. Acad. Sci. USA 100, 1499–1504 (2003). [CrossRef]
  18. X. Dong, C. Du, S. Li, C. Wang, and Y. Fu, “Control approach for form accuracy of microlenses with continuous relief,” Opt. Express 13, 1353–1360 (2005). [CrossRef]
  19. T. C. Chong, M. H. Hong, and L. P. Shi, “Laser precision engineering: from microfabrication to nanoprocessing,” Laser Photon. Rev. 4, 123–143 (2010). [CrossRef]
  20. Y. Lin, M. H. Hong, and T. C. Chong, “Ultrafast-laser-induced parallel phase-change nanolithography,” Appl. Phys. Lett. 89, 041108 (2006). [CrossRef]
  21. S. K. Lin, I. C. Lin, and D. P. Tsai, “Characterization of nano recorded marks at different writing strategies on phase-change recording layer of optical disks,” Opt. Express 14, 4452–4458 (2006). [CrossRef]
  22. C. F. Guo, Z. Zhang, S. Cao, and Q. Liu, “Laser direct writing of nanoreliefs in Sn nanofilms,” Opt. Lett. 34, 2820–2822 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited