OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 28 — Oct. 1, 2012
  • pp: 6799–6804

Generation of dipole vortex array using spiral Dammann zone plates

Junjie Yu, Changhe Zhou, Wei Jia, Anduo Hu, Wugang Cao, Jun Wu, and Shaoqing Wang  »View Author Affiliations

Applied Optics, Vol. 51, Issue 28, pp. 6799-6804 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1009 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose a new diffractive optical element, called a spiral Dammann zone plate (SDZP), to generate a series of dipole vortices along the optical axis in the focal region of a focusing objective. By combining this SDZP and another Dammann grating, we describe the generation of three-dimensional dipole vortex arrays in the focal volume of an objective. For experimental demonstration, a 1×5 SDZP with base charge of l=1 is fabricated by using lithography and wet-etching techniques, and a 1×5 coaxial dipole vortex array is achieved for an objective of NA=0.127. Furthermore, by combining the 1×5 SDZP and another 5×5 Dammann grating, a 5×5×5 dipole vortex array is also experimentally demonstrated. The results show that topological charges of these 5×5 vortex arrays on five coaxial planes could be tunable by selecting a vortex beam carrying different charge as the incident field.

© 2012 Optical Society of America

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(140.7010) Lasers and laser optics : Laser trapping
(230.1950) Optical devices : Diffraction gratings
(050.4865) Diffraction and gratings : Optical vortices

ToC Category:
Diffraction and Gratings

Original Manuscript: June 15, 2012
Revised Manuscript: August 30, 2012
Manuscript Accepted: August 30, 2012
Published: September 26, 2012

Junjie Yu, Changhe Zhou, Wei Jia, Anduo Hu, Wugang Cao, Jun Wu, and Shaoqing Wang, "Generation of dipole vortex array using spiral Dammann zone plates," Appl. Opt. 51, 6799-6804 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. R. Daria, P. J. Rodrigo, and J. Gluckstad, “Dynamic array of dark optical traps,” Appl. Phys. Lett. 84, 323–325 (2004). [CrossRef]
  2. A. Kumar, P. Vaity, J. Banerji, and R. P. Singh, “Making an optical vortex and its copies using a single spatial light modulator,” Phys. Lett. A 375, 3634–3640 (2011). [CrossRef]
  3. E. Brasselet, “Tunable optical vortex arrays from a single nematic topological defect,” Phys. Rev. Lett. 108, 087801 (2012). [CrossRef]
  4. Z. Wang, N. Zhang, and X. Yuan, “High-volume optical vortex multiplexing and de-multiplexing for free-space optical communication,” Opt. Express 19, 482–492 (2011). [CrossRef]
  5. L. Janicijevic and S. Topuzoski, “Fresnel and Fraunhofer diffraction of a Gaussian laser beam by fork-shaped gratings,” J. Opt. Soc. Am. A 25, 2659–2669 (2008). [CrossRef]
  6. I. Moreno, J. A. Davis, B. M. L. Pascoguin, M. J. Mitry, and D. M. Cottrell, “Vortex sensing diffraction gratings,” Opt. Lett. 34, 2927–2929 (2009). [CrossRef]
  7. N. R. Heckenberg, R. McDuff, C. P. Smith, and A. G. White, “Generation of optical phase singularities by computer-generated holograms,” Opt. Lett. 17, 221–223 (1992). [CrossRef]
  8. S. Vyas and P. Senthilkumaran, “Vortex array generation by interference of spherical waves,” Appl. Opt. 46, 7862–7867 (2007). [CrossRef]
  9. S.-C. Chu, Y.-T. Chen, K.-F. Tsai, and K. Otsuka, “Generation of high-order Hermite–Gaussian modes in end-pumped solid-state lasers for square vortex array laser beam generation,” Opt. Express 20, 7128–7141 (2012). [CrossRef]
  10. S. Tao, X. Yuan, J. Lin, and R. E. Burge, “Sequence of focused optical vortices generated by a spiral fractal zone plate,” Appl. Phys. Lett. 89, 031105 (2006). [CrossRef]
  11. J. Yu, C. Zhou, W. Jia, A. Hu, W. Cao, J. Wu, and S. Wang, “Three-dimensional Dammann vortex array with tunable topological charge,” Appl. Opt. 51, 2485–2490(2012). [CrossRef]
  12. N. Zhang, X. Yuan, and R. E. Burge, “Extending the detection range of optical vortices by Dammann vortex gratings,” Opt. Lett. 35, 3495–3497 (2010). [CrossRef]
  13. J. Xavier, S. Vyas, P. Senthilkumaran, C. Denz, and J. Joseph, “Sculptured 3D twister superlattices embedded with tunable vortex spirals,” Opt. Lett. 36, 3512–3514(2011). [CrossRef]
  14. J. Yu, C. Zhou, W. Jia, W. Cao, S. Wang, J. Ma, and H. Cao, “Three-dimensional Dammann array,” Appl. Opt. 51, 1619–1630 (2012). [CrossRef]
  15. C. Zhou and L. Liu, “Numerical study of Dammann array illuminators,” Appl. Opt. 34, 5961–5969 (1995). [CrossRef]
  16. M. Leutenegger, R. Rao, R. A. Leitgeb, and T. Lasser, “Fast focus field calculations,” Opt. Express 14, 11277–11291(2006). [CrossRef]
  17. C. Di and C. Zhou, “Dynamic optical coupled system employing even-numbered Dammann gratings,” Appl. Opt. 45, 1993–2000 (2006). [CrossRef]
  18. J. E. Curtis and D. G. Grier, “Structure of optical vortices,” Phys. Rev. Lett. 90, 133901 (2003). [CrossRef]
  19. J. Alda and F. J. Gonzalez, “Polygonal Fresnel zone plates,” J. Opt. A: Pure Appl. Opt. 11, 085707 (2009). [CrossRef]
  20. N. Gao, C. Xie, C. Li, C. Jin, and M. Liu, “Square optical vortices generated by binary spiral zone plates,” Appl. Phys. Lett. 98, 151106 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (2026 KB)     
» Media 2: MOV (4335 KB)     
» Media 3: MOV (3712 KB)     
» Media 4: MOV (4279 KB)     
» Media 5: MOV (2350 KB)     
» Media 6: MOV (3038 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited