OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 29 — Oct. 10, 2012
  • pp: 7039–7045

Resonant effects in nonlinear photon absorption during femtosecond laser ablation of Nd-doped silicate glass

Yadong Zhao, Lan Jiang, Juqiang Fang, Qianghua Chen, Xiaowei Li, and Yongfeng Lu  »View Author Affiliations

Applied Optics, Vol. 51, Issue 29, pp. 7039-7045 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (795 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This study investigates the resonant effects in nonlinear photon absorption in femtosecond laser ablation of Nd-doped silicate glass (Nd:glass). During the femtosecond laser ablation process, the resonant ablation threshold fluence is decreased by up to 40% compared with that of ordinary ablation. However, it is found that the resonant effect is closely related with laser intensity, and lower laser intensities are required to achieve a significant enhancement. When the intensity is lower than 2.28×1014W/cm2 at which multiphoton ionization dominates, resonant effect is enhanced by a factor of 1.4 to 4.4. When the intensity is higher than 2.28×1014W/cm2, at which intensity tunnel ionization dominates, the resonant effect becomes weak and gradually fades away. It is shown that the resonant effect is still important for multiphoton ionization yet insignificant for tunnel ionization.

© 2012 Optical Society of America

OCIS Codes
(140.7090) Lasers and laser optics : Ultrafast lasers
(220.4610) Optical design and fabrication : Optical fabrication

ToC Category:
Lasers and Laser Optics

Original Manuscript: May 29, 2012
Revised Manuscript: September 3, 2012
Manuscript Accepted: September 6, 2012
Published: October 8, 2012

Yadong Zhao, Lan Jiang, Juqiang Fang, Qianghua Chen, Xiaowei Li, and Yongfeng Lu, "Resonant effects in nonlinear photon absorption during femtosecond laser ablation of Nd-doped silicate glass," Appl. Opt. 51, 7039-7045 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. T. Dai, L. Jin, W. Lu, R. T. An, L. L. Tai, and D. Y. Chen, “Resonant laser ablation of copper and its application in microanalysis,” Appl. Phys. A 69, S167–S169 (1999).
  2. R. Prasanth, L. K. van Vugt, D. A. M. Vanmaekelbergh, and H. C. Gerritsen, “Resonance enhancement of optical second harmonic generation in a ZnO nanowire,” Appl. Phys. Lett. 88, 181501 (2006). [CrossRef]
  3. D. M. Bubb, S. L. Johnson, R. Belmont, K. E. Schriver, R. F. Haglund, C. Antonacci, and L. S. Yeung, “Mode-specific effects in resonant infrared ablation and deposition of polystyrene,” Appl. Phys. A 83, 147–151 (2006). [CrossRef]
  4. L. Jiang, L. Li, and H. L. Tsai, “CO2 gas resonance absorption at CO2 laser wavelength in multiple laser coating,” Appl. Phys. B 97, 199–206 (2009). [CrossRef]
  5. Z. Q. Xie, Y. S. Zhou, X. N. He, Y. Gao, J. B. Park, H. Ling, L. Jiang, and Y. F. Lu, “Fast growth of diamond crystals in open air by combustion synthesis with resonant laser energy coupling,” Cryst. Growth Des. 10, 1762–1766 (2010). [CrossRef]
  6. S. L. Johnson, C. T. Bowie, B. Ivanoa, H. K. Park, and R. F. Haglund, “Fabrication of polymer LEDs by resonant infrared pulsed laser ablation,” Proc. SPIE 6486, 64860G (2007). [CrossRef]
  7. F. Aubriet, L. Vernex-Loset, B. Maunit, G. Krier, and J. F. Muller, “The resonance laser ablation Fourier-transform ion cyclotron resonance mass spectrometry (RLA-FTICRMS) a new coupling for material science,” Int. J. Mass Spectrom. 219, 717–727 (2002). [CrossRef]
  8. I. S. Borthwick, K. W. D. Ledingham, and R. P. Singhal, “Resonant laser ablation—a novel surface analytic technique,” Spectrochim. Acta B 47, 1259–1265 (1992). [CrossRef]
  9. F. R. Verdun, G. Krier, and J. F. Muller, “Increased sensitivity in laser microprobe mass analysis by using resonant two-photon ionization process,” Anal. Chem. 59, 1383–1387 (1987). [CrossRef]
  10. D. Cleveland, P. Stchur, X. D. Hou, K. X. Yang, J. Zhou, and R. G. Michel, “Resonant laser ablation of metals detected by atomic emission in a microwave plasma and by inductively coupled plasma mass spectrometry,” Appl. Spectrosc. 59, 1427–1444 (2005). [CrossRef]
  11. S. A. Reid, W. Ho, and F. J. Lamelas, “Pulsed laser ablation of Sn and SnO2 targets:  neutral composition, energetics, and wavelength dependence,” J. Phys. Chem. B 104, 5324–5330 (2000). [CrossRef]
  12. C. G. Gill, T. M. Allen, J. E. Anderson, T. N. Taylor, P. B. Kelly, and N. S. Nogar, “Low-power resonant laser ablation of copper,” Appl. Opt. 35, 2069–2082 (1996). [CrossRef]
  13. D. M. Bubb, J. S. Horwitz, J. H. Callahan, R. A. McGill, E. J. Houser, D. B. Chrisey, M. R. Papantonakis, R. F. Haglund, M. C. Galicia, and A. Vertes, “Resonant infrared pulsed-laser deposition of polymer films using a free-electron laser,” J. Vac. Sci. Technol. A 19, 2698–2702 (2001). [CrossRef]
  14. V. Z. Kolev, M. W. Duering, B. Luther-Davies, and A. V. Rode, “Compact high power optical source for resonant infrared pulsed laser ablation and deposition of polymer materials,” Opt. Express 14, 12302–12309 (2006). [CrossRef]
  15. C. H. Lin, Z. H. Rao, L. Jiang, W. J. Tsai, P. H. Wu, C. W. Chien, S. J. Chen, and H. L. Tsai, “Investigations of femtosecond–nanosecond dual-beam laser ablation of dielectrics,” Opt. Lett. 35, 2490–2492 (2010). [CrossRef]
  16. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photon. 2, 219–225 (2008). [CrossRef]
  17. S. S. Mao, F. Quéré, S. Guizard, X. Mao, R. E. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys. A 79, 1695–1709 (2004). [CrossRef]
  18. L. V. Keldysh, “Ionization in the field of a strong electromagnetic wave,” Sov. Phys. JETP 20, 1307–1314 (1965).
  19. A. Rudenko, K. Zrost, C. D. Schröter, V. L. B. de Jesus, B. Feuerstein, R. Moshammer, and J. Ullrich, “Resonant structures in the low-energy electron continuum for single ionization of atoms in the tunnelling regime,” J. Phys. B 37, L407–L413 (2004). [CrossRef]
  20. F. H. M. Faisal and G. Schlegel, “Signatures of photon effect in the tunnel regime,” J. Phys. B 38, L223–L231 (2005). [CrossRef]
  21. J. Bonse, P. Rudolph, J. Kruger, S. Baudach, and W. Kautek, “Femtosecond pulse laser processing of TiN on silicon,” Appl. Surf. Sci. 154, 659–663 (2000). [CrossRef]
  22. D. Ashkenasi, M. Lorenz, R. Stoian, and A. Rosenfeld, “Surface damage threshold and structuring of dielectrics using femtosecond laser pulses: the role of incubation,” Appl. Surf. Sci. 150, 101–106 (1999). [CrossRef]
  23. J. R. Vázquez de Aldana, C. Méndez, and L. Roso, “Saturation of ablation channels micro-machined in fused silica with many femtosecond laser pulses,” Opt. Express 14, 1329–1338(2006). [CrossRef]
  24. H. Cronberg, M. Reichling, E. Broberg, H. B. Nielsen, E. Matthias, and N. Tolk, “Effects of inverse bremsstrahlung in laser-induced plasmas from a graphite surface,” Appl. Phys. B 52, 155–157 (1991). [CrossRef]
  25. K. Wong, S. Vongehr, and V. V. Kresin, “Work functions, ionization potentials, and in between: scaling relations based on the image-charge model,” Phys. Rev. B 67, 035406 (2003). [CrossRef]
  26. A. Kaiser, B. Rethfeld, M. Vicanek, and G. Simon, “Microscopic processes in dielectrics under irradiation by subpicosecond laser pulses,” Phys. Rev. B 61, 11437–11450 (2000).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited