OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 29 — Oct. 10, 2012
  • pp: 7080–7088

Computation of diffracted fields for the case of high numerical aperture using the angular spectrum method

Tomasz Kozacki, Konstantinos Falaggis, and Malgorzata Kujawinska  »View Author Affiliations


Applied Optics, Vol. 51, Issue 29, pp. 7080-7088 (2012)
http://dx.doi.org/10.1364/AO.51.007080


View Full Text Article

Enhanced HTML    Acrobat PDF (1010 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The angular spectrum (AS) method is a popular solution to the Helmholtz Equation without the use of approximations. In this work, new criteria on sampling requirements are derived using the Wigner distribution (WD). It is shown that for the case of high numerical aperture the conventional AS method requires a very large amount of zero-padding, making it impractical due to requirements on memory and computational effort. This work proposes the use of a modified AS algorithm that evaluates only non-zero components of the field. The results obtained from the WD combined with the modified AS algorithm enable an accurate and efficient field computation for cases where the conventional AS method cannot be implemented.

© 2012 Optical Society of America

OCIS Codes
(050.1940) Diffraction and gratings : Diffraction
(090.0090) Holography : Holography
(050.1755) Diffraction and gratings : Computational electromagnetic methods

ToC Category:
Diffraction and Gratings

History
Original Manuscript: July 6, 2012
Revised Manuscript: September 13, 2012
Manuscript Accepted: September 13, 2012
Published: October 9, 2012

Citation
Tomasz Kozacki, Konstantinos Falaggis, and Malgorzata Kujawinska, "Computation of diffracted fields for the case of high numerical aperture using the angular spectrum method," Appl. Opt. 51, 7080-7088 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-29-7080


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. Matsushima and T. Shimobaba, “Band-limited angular spectrum method for numerical simulation of free-space propagation in far and near fields,” Opt. Express 17, 19662–19673 (2009). [CrossRef]
  2. F. Shen and A. Wang, “Fast-Fourier-transform based numerical integration method for the Rayleigh–Sommerfeld diffraction formula,” Appl. Opt. 45, 1102–1110 (2006). [CrossRef]
  3. A. Wuttig, M. Kanka, H. J. Kreuzer, and R. Riesenberg, “Packed domain Rayleigh–Sommerfeld wavefield propagation for large targets,” Opt. Express 18, 27036–27047 (2010). [CrossRef]
  4. V. Nascov and P. C. Logofătu, “Fast computation algorithm for the Rayleigh–Sommerfeld diffraction formula using a type of scaled convolution,” Appl. Opt. 48, 4310–4319 (2009). [CrossRef]
  5. K. Matsushima, H. Schimmel, and F. Wyrowski, “Fast calculation method for optical diffraction on tilted planes by use of the angular spectrum of plane waves,” J. Opt. Soc. Am. A 20, 1755–1762 (2003). [CrossRef]
  6. N. Delen and B. Hooker, “Free-space beam propagation between arbitrarily oriented planes based on full diffraction theory: a fast Fourier transform approach,” J. Opt. Soc. Am. A 15, 857–867 (1998). [CrossRef]
  7. Y. Lim, S.-Y. Lee, and B. Lee, “Transflective digital holographic microscopy and its use for probing plasmonic light beaming,” Opt. Express 19, 5202–5212 (2011). [CrossRef]
  8. T. Colomb, N. Pavillon, J. Kühn, E. Cuche, C. Depeursinge, and Y. Emery, “Extended depth-of-focus by digital holographic microscopy,” Opt. Lett. 35, 1840–1842 (2010). [CrossRef]
  9. J. Hahn, H. Kim, Y. Lim, G. Park, and B. Lee, “Wide viewing angle dynamic holographic stereogram with a curved array of spatial light modulators,” Opt. Express 16, 12372–12386 (2008). [CrossRef]
  10. T. Kozacki, M. Kujawinska, G. Finke, W. Zaperty, and B. M. Hennelly, “Holographic capture and display systems in circular configurations,” J. Display Technol. 8, 225–232 (2012). [CrossRef]
  11. A. J. Devaney, “A filtered backpropagation algorithm for diffraction tomography,” Ultrason. Imag. 4, 336–350 (1982). [CrossRef]
  12. T. Kozacki, M. Kujawinska, and P. Kniażewski, “Investigation of limitations of optical diffraction tomography,” Opto-Electron. Rev. 15, 102–109 (2007). [CrossRef]
  13. G. S. Khan, K. Mantel, I. Harder, N. Lindlein, and J. Schwider, “Design considerations for the absolute testing approach of aspherics using combined diffractive optical elements,” Appl. Opt. 46, 7040–7048 (2007). [CrossRef]
  14. X. Zhou, D. P. Poenar, K. Y. Liu, M. S. Tse, C.-K. Heng, S. N. Tan, and N. Zhang, “Limits of scalar diffraction theory and an iterative angular spectrum algorithm for finite aperture diffractive optical element design,” Opt. Express 8, 705–722 (2001). [CrossRef]
  15. P. Langehanenberg, G. Bally, and B. Kemper, “Autofocusing in digital holographic microscopy,” 3D Research 2, 1–11(2011). [CrossRef]
  16. T. Kozacki, M. Józwik, and R. Jóźwicki, “Determination of optical field generated by a microlens using digital holographic method,” Opto-Electron. Rev. 17, 211–216 (2009). [CrossRef]
  17. J. J. Stamnes, Waves in Focal Regions: Propagation, Diffraction and Focusing of Light, Sound and Water Waves (Taylor & Francis, 1986).
  18. T. Kozacki, “Numerical errors of diffraction computing using plane wave spectrum decomposition,” Opt. Commun. 281, 4219–4223 (2008). [CrossRef]
  19. K. Matsushima, “Shifted angular spectrum method for off-axis numerical propagation.,” Opt. Express 18, 18453–18463 (2010). [CrossRef]
  20. T. Kozacki, R. Krajewski, and M. Kujawinska, “Reconstruction of refractive-index distribution in off-axis digital holography optical diffraction tomographic system,” Opt. Express 17, 13758–13767 (2009). [CrossRef]
  21. M. E. Testorf, B. M. Hennelly, and J. Ojeda-Castaneda, Phase-Space Optics Fundamentals and Applications (McGraw-Hill Professional, 2009).
  22. H. Gross, W. Singer, and M. Totzek, Handbook of Optical Systems, Vol. 2 (Wiley, 2005).
  23. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996).
  24. J. G. Proakis and D. G. Manolakis, Digital Signal Processing: Principles, Algorithms and Applications, Vol. 4 (Prentice Hall, 1996), p. 471.
  25. T. Kozacki, “On resolution and viewing of holographic image generated by 3D holographic display,” Opt. Express 18, 27118–27129 (2010). [CrossRef]
  26. T. Kozacki, M. Kujawinska, G. Finke, B. Hennelly, and N. Pandey, “Extended viewing angle holographic display system with tilted SLMs in a circular configuration,” Appl. Opt. 51, 1771–1780 (2012). [CrossRef]
  27. NVIDIA CUDA Programming Guide,Version 3 (NVIDIA Corporation, 2010), pp. 1–111.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited