OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 29 — Oct. 10, 2012
  • pp: 7098–7102

Subwavelength B-shaped metallic hole array terahertz filter with InSb bar as thermally tunable structure

Wei Li, Dengfeng Kuang, Fei Fan, Shengjiang Chang, and Lie Lin  »View Author Affiliations


Applied Optics, Vol. 51, Issue 29, pp. 7098-7102 (2012)
http://dx.doi.org/10.1364/AO.51.007098


View Full Text Article

Enhanced HTML    Acrobat PDF (407 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a subwavelength B-shaped metallic hole array filter with an embedded thermally tunable InSb semiconductor bar in the terahertz regime. The resonance frequency of this filter can be actively tuned by controlling the temperature of InSb. The transmissions of the filter are calculated with the finite-difference time domain method at various temperatures. Narrowband THz wave with the full width at half maximum of 235 GHz can be selected in the frequency range from 0.74 to 2.02 THz at temperatures from 160 to 350 K.

© 2012 Optical Society of America

OCIS Codes
(230.4110) Optical devices : Modulators
(350.2450) Other areas of optics : Filters, absorption
(300.6495) Spectroscopy : Spectroscopy, teraherz

ToC Category:
Spectroscopy

History
Original Manuscript: July 16, 2012
Manuscript Accepted: August 27, 2012
Published: October 9, 2012

Citation
Wei Li, Dengfeng Kuang, Fei Fan, Shengjiang Chang, and Lie Lin, "Subwavelength B-shaped metallic hole array terahertz filter with InSb bar as thermally tunable structure," Appl. Opt. 51, 7098-7102 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-29-7098


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. I. C. Ho, X. Y. Guo, and X. C. Zhang, “Design and performance of reflective terahertz air-biased-coherent-detection for time-domain spectroscopy,” Opt. Express 18, 2872–2883 (2010). [CrossRef]
  2. W. L. Chan, M. L. Moravec, R. G. Baraniuk, and D. M. Mittleman, “Terahertz imaging with compressed sensing and phase retrieval,” Opt. Lett. 33, 974–976 (2008). [CrossRef]
  3. H. Tao, A. C. Strikwerda, M. Liu, J. P. Mondia, E. Ekmekci, K. Fan, D. L. Kaplan, W. J. Padilla, X. Zhang, R. D. Averitt, and F. G. Omenetto, “Performance enhancement of terahertz metamaterials on ultrathin substrates for sensing applications,” Appl. Phys. Lett. 97, 261909 (2010). [CrossRef]
  4. J. L. Liu, J. M. Dai, S. L. Chin, and X. C. Zhang, “Broadband terahertz wave remote sensing using coherent manipulation of fluorescence from asymmetrically ionized gases,” Nat. Photon. 4, 627–631 (2010). [CrossRef]
  5. R. Mendis, A. Nag, F. Chen, and D. M. Mittleman, “A tunable universal terahertz filter using artificial dielectrics based on parallel-plate waveguides,” Appl. Phys. Lett. 97, 131106 (2010). [CrossRef]
  6. P. Orellana and F. Claro, “A terahertz molecular switch,” Phys. Rev. Lett. 90, 178302 (2003). [CrossRef]
  7. H. M. Chen, J. Su, J. L. Wang, and X. Y. Zhao, “Optically-controlled high-speed terahertz wave modulator based on nonlinear photonic crystals,” Opt. Express 19, 3599–3603 (2011). [CrossRef]
  8. J. S. Li, D. G. Xu, and J. O. Yao, “Compact terahertz wave polarizing beam splitter,” Appl. Opt. 49, 4494–4497 (2010). [CrossRef]
  9. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemis, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669(1998). [CrossRef]
  10. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemis, T. Thio, and D. E. Grupp, “Surface plasmons enhance optical transmission through sub-wavelength holes,” Phys. Rev. B 58, 6779–6782(1998). [CrossRef]
  11. D. X. Qu, D. Grischkowsky, and W. L. Zhang, “Terahertz transmission properties of thin, subwavelength metallic hole arrays,” Opt. Lett. 29, 896–898 (2004). [CrossRef]
  12. J. G. Rivas, C. Janke, P. H. Bolivar, and H. Kurz, “Transmission of THz radiation through InSb gratings of sub-wavelength apertures,” Opt. Express 13, 847–859 (2005). [CrossRef]
  13. C. Janke, J. G. Rivas, P. H. Bolivar, and H. Kurz, “All-optical switching of the transmission of electromagnetic radiation through subwavelength apertures,” Opt. Lett. 30, 2357–2359 (2005). [CrossRef]
  14. E. Hendry, M. J. Lockyear, J. G. Rivas, L. Kuipers, and M. Bonn, “Ultrafast optical switching of the THz transmission through metallic subwavelength hole arrays,” Phys. Rev. B 75, 235305 (2007). [CrossRef]
  15. J. Zhu, J. G. Han, Z. Tian, J. Q. Gu, Z. Y. Chen, and W. L. Zhang, “Thermal broadband tunable terahertz metamaterials,” Opt. Commun. 284, 3129–3133 (2011). [CrossRef]
  16. J. G. Han and A. Lakhtakia, “Semiconductor split-ring resonators for thermally tunable, terahertz metamaterials,” J. Mod. Opt. 56, 554–557 (2009). [CrossRef]
  17. S. C. Howeels and L. A. Schlie, “Transient terahertz reflection spectroscopy of undoped InSb from 0.1 to 1.1 THz,” Appl. Phys. Lett. 69, 550–552 (1996). [CrossRef]
  18. P. Halevi and F. Ramos-Mendieta, “Tunable photonic crystals with semiconducting constituents,” Phys. Rev. Lett. 85, 1875–1878 (2000). [CrossRef]
  19. X. Y. Dai, Y. J. Xiang, S. C. Wen, and H. Y. He, “Thermally tunable and omnidirectional terahertz photonic bandgap in the one-dimensional photonic crystals containing semiconductor InSb,” J. Appl. Phys. 109, 053104 (2011). [CrossRef]
  20. N. Laman and D. Grischkowsky, “Reduced conductivity in the terahertz skin-depth layer of metals,” Appl. Phys. Lett. 90, 122115 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited