OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 31 — Nov. 1, 2012
  • pp: 7434–7436

Influence of wavelength-dependent-loss on dispersive wave in nonlinear optical fibers

Rodrigo Acuna Herrera  »View Author Affiliations


Applied Optics, Vol. 51, Issue 31, pp. 7434-7436 (2012)
http://dx.doi.org/10.1364/AO.51.007434


View Full Text Article

Enhanced HTML    Acrobat PDF (231 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this work, we study numerically the influence of wavelength-dependent loss on the generation of dispersive waves (DWs) in nonlinear fiber. This kind of loss can be obtained, for instance, by the acousto-optic effect in fiber optics. We show that this loss lowers DW frequency in an opposite way that the Raman effect does. Also, we see that the Raman effect does not change the DW frequency too much when wavelength-dependent loss is included. Finally, we show that the DW frequency is not practically affected by fiber length.

© 2012 Optical Society of America

OCIS Codes
(060.2310) Fiber optics and optical communications : Fiber optics
(190.0190) Nonlinear optics : Nonlinear optics

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: July 31, 2012
Revised Manuscript: September 28, 2012
Manuscript Accepted: September 29, 2012
Published: October 22, 2012

Citation
Rodrigo Acuna Herrera, "Influence of wavelength-dependent-loss on dispersive wave in nonlinear optical fibers," Appl. Opt. 51, 7434-7436 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-31-7434


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Kaiser, E. A. J. Marcatili, and S. E. Miller, “A new optical fiber,” Bell Syst. Tech. J. 52, 265–269 (1973).
  2. J. C. Knight, T. A. Birks, P. S. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21, 1547–1549 (1996). [CrossRef]
  3. J. C. Knight, T. A. Birks, P. S. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding: errata,” Opt. Lett. 22, 484–485 (1997). [CrossRef]
  4. P. Rigby, “Optics—a photonic crystal fibre,” Nature 396, 415–416 (1998). [CrossRef]
  5. J. Broeng, D. Mogilevstev, S. E. Barkou, and A. Bjarklev, “Photonic crystal fibers: a new class of optical waveguides,” Opt. Fiber Technol. 5, 305–330 (1999). [CrossRef]
  6. S. L. Chin, S. Petit, F. Borne, and K. Miyazaki, “The white light supercontinuum is indeed an ultrafast white light laser,” Jpn. J. Appl. Phys. 38, L126–L128 (1999). [CrossRef]
  7. T. Hashimoto, H. Sotobayashi, K. Kitayama, and W. Chujo, “Photonic conversion of OC-192OTDM-to-4 x OC-48WDM by supercontinuum generation,” Electron. Lett. 36, 1133–1135 (2000). [CrossRef]
  8. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000). [CrossRef]
  9. R. Holzwarth, T. Udem, T. W. Hansch, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264–2267 (2000). [CrossRef]
  10. I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, “Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber,” Opt. Lett. 26, 608–610 (2001). [CrossRef]
  11. A. V. Husakou and J. Herrmann, “Supercontinuum generation of higher order solitons by fission in photonic crystal fibers,” Phys. Rev. Lett. 87, 203901 (2001). [CrossRef]
  12. S. Coen, A. H. L. Chan, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “White-light supercontinuum generation with 60 ps pump pulses in a photonic crystal fiber,” Opt. Lett. 26, 1356–1358 (2001). [CrossRef]
  13. R. A. Herrera, “Influence of acoustic waves on supercontinuum generation in photonic crystal fibers,” Appl. Opt. 51, 2223–2229 (2012). [CrossRef]
  14. H. S. Kim, S. H. Yun, I. K. Kwang, and B. Y. Kim, “All-fiber acousto-optic tunable notch filter with electronically controllable spectra profile,” Opt. Lett. 22, 1476–1478 (1997). [CrossRef]
  15. H. E. Engan, B. Y. Kim, J. N. Blake, and H. J. Shaw, “Propagation and optical interaction of guided acoustic waves in two-mode optical fibers,” J. Lightwave Technol. 6, 428–436 (1988). [CrossRef]
  16. K. F. Graff, Wave Motion in Elastic Solids (Clarendon, 1975).
  17. M. D. Nielsen, “Large mode area photonic crystal fibers,” Ph.D. dissertation (Technical University of Denmark, 2004).
  18. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2008).
  19. S. Roy, S. K. Bhadra, and G. P. Agrawal, “Dispersive wave generation in supercontinuum process inside nonlinear microstructured fibre,” Curr. Sci. 100, 321–342 (2011).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited