OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 31 — Nov. 1, 2012
  • pp: 7437–7442

Enhancement of field–analyte interaction at metallic nanogap arrays for sensitive localized surface plasmon resonance detection

Rabiatul Adawiah Awang, Sherif Hamdy El-Gohary, Nak-Hyeon Kim, and Kyung Min Byun  »View Author Affiliations

Applied Optics, Vol. 51, Issue 31, pp. 7437-7442 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (413 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigated the near-field enhancement of a localized surface plasmon resonance (LSPR) structure based on gold nanograting pairs with a nanosized gap. The results calculated by finite-difference time-domain and rigorous coupled-wave analysis methods presented that the nanogap enclosed by two neighboring nanogratings produced significant confinement and enhancement of electromagnetic fields and allowed a sensitive detection in sensing of surface binding events. Gold gratings with a narrow gap distance less than 10 nm showed enhanced refractive index sensitivity due to the intensified optical field at the nanogap, outperforming the LSPR structure with noninteracting nanogratings. Also, we analyzed the effectiveness of using an overlap integral (OI) between analyte and local plasmon field to estimate the detection sensitivity. We found a strong correlation of field–analyte OI with far-field sensor sensitivity.

© 2012 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(280.4788) Remote sensing and sensors : Optical sensing and sensors
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Optics at Surfaces

Original Manuscript: August 6, 2012
Revised Manuscript: September 25, 2012
Manuscript Accepted: September 26, 2012
Published: October 22, 2012

Rabiatul Adawiah Awang, Sherif Hamdy El-Gohary, Nak-Hyeon Kim, and Kyung Min Byun, "Enhancement of field–analyte interaction at metallic nanogap arrays for sensitive localized surface plasmon resonance detection," Appl. Opt. 51, 7437-7442 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. Scognamiglio, G. Pezzotti, I. Pezzotti, J. Cano, K. Buonasera, D. Giannini, and M. T. Giardi, “Biosensors for effective environmental and agrifood protection and commercialization: from research to market,” Microchim. Acta 170, 215–225 (2010). [CrossRef]
  2. F. S. Ligler, “Perspective on optical biosensors and integrated sensor systems,” Anal. Chem. 81, 519–526 (2009). [CrossRef]
  3. X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620, 8–26 (2008). [CrossRef]
  4. B. Liedberg, C. Nylander, and I. Lunstrom, “Surface plasmon resonance for gas detection and biosensing,” Sens. Actuators 4, 299–304 (1983). [CrossRef]
  5. J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377, 528–539 (2003). [CrossRef]
  6. A. W. Wark, H. J. Lee, and R. M. Corn, “Long-range surface plasmon resonance imaging for bioaffinity sensors,” Anal. Chem. 77, 3904–3907 (2005). [CrossRef]
  7. M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108, 494–521 (2008). [CrossRef]
  8. S. Wang, D. F. P. Pile, C. Sun, and X. Zhang, “Nanopin plasmonic resonator array and its optical properties,” Nano Lett. 7, 1076–1080 (2007). [CrossRef]
  9. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008). [CrossRef]
  10. T. Chung, S.-Y. Lee, E. Y. Song, H. Chun, and B. Lee, “Plasmonic nanostructures for nano-scale bio-sensing,” Sensors 11, 10907–10929 (2011). [CrossRef]
  11. P. K. Jain, W. Huang, and M. A. El-Sayed, “On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation,” Nano Lett. 7, 2080–2088 (2007). [CrossRef]
  12. K. Kim, D. J. Kim, S. Moon, D. Kim, and K. M. Byun, “Localized surface plasmon resonance detection of layered biointeractions on metallic subwavelength nanogratings,” Nanotechnology 20, 315501 (2009). [CrossRef]
  13. N.-H. Kim, W. K. Jung, and K. M. Byun, “Correlation analysis between plasmon field distribution and sensitivity enhancement in reflection- and transmission-type localized surface plasmon resonance biosensors,” Appl. Opt. 50, 4982–4988 (2011). [CrossRef]
  14. X. Liang, K. J. Morton, R. H. Austin, and S. Y. Chou, “Single sub-20 nm wide, centimeter-long nanofluidic channel fabricated by novel nanoimprint mold fabrication and direct imprinting,” Nano Lett. 7, 3774–3780 (2007). [CrossRef]
  15. Y. S. Jung, J. Wuenschell, H. K. Kim, P. Kaur, and D. H. Waldeck, “Blue-shift of surface plasmon resonance in a metal nanoslit array structure,” Opt. Express 17, 16081–16091 (2009). [CrossRef]
  16. E. D. Palik, Handbook of Optical Constants of Solids(Academic, 1985).
  17. Y. Liu, R. Cheng, L. Liao, H. Zhou, J. Bai, G. Liu, L. Liu, Y. Huang, and X. Duan, “Plasmon resonance enhanced multicolour photodetection by graphene,” Nat. Commun. 2, 579 (2011). [CrossRef]
  18. Y. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett. 93, 181108(2008). [CrossRef]
  19. Y. Kanamori, K. Hane, H. Sai, and H. Yugami, “100 nm period silicon antireflection structures fabricated using a porous alumina membrane mask,” Appl. Phys. Lett. 78, 142(2001). [CrossRef]
  20. Q. Cao and P. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett. 88, 057403 (2002). [CrossRef]
  21. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of metallic surface-relief gratings,” J. Opt. Soc. Am. A 3, 1780–1787 (1986). [CrossRef]
  22. L. Li and C. W. Haggans, “Convergence of the coupled-wave method for metallic lamellar diffraction gratings,” J. Opt. Soc. Am. A 10, 1184–1189 (1993). [CrossRef]
  23. W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interaction gold nanoparticles,” Opt. Commun. 220, 137–141(2003). [CrossRef]
  24. K. M. Byun, S. M. Jang, S. J. Kim, and D. Kim, “Effect of target localization on the sensitivity of a localized surface plasmon resonance biosensor based on subwavelength nanostructures,” J. Opt. Soc. Am. A 26, 1027–1034 (2009). [CrossRef]
  25. A. Shalabney and I. Abdulhalim, “Electromagnetic fields distribution in multilayer thin film structures and the origin of sensitivity enhancement in surface plasmon resonance sensors,” Sens. Actuators A 159, 24–32 (2010). [CrossRef]
  26. W. Lee and D. Kim, “Field–matter integral overlap to estimate the sensitivity of surface plasmon resonance biosensors,” J. Opt. Soc. Am. A 29, 1367–1376 (2012). [CrossRef]
  27. A. Boltasseva, “Plasmonic components fabrication via nanoimprint,” J. Opt. A 11, 114001 (2009). [CrossRef]
  28. S.-W. Lee, K.-S. Lee, J. Ahn, J.-J. Lee, M.-G. Kim, and Y.-B. Shin, “Highly sensitive biosensing using arrays of plasmonic Au nanodisks realized by nanoimprint lithography,” ACS Nano 5, 897–904 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited