OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 31 — Nov. 1, 2012
  • pp: 7560–7565

Modeling the avalanche diode as a photon detector in quantum optical interferometers

Kay Schmid, Erna Frins, Wolfgang Dultz, and Heidrun Schmitzer  »View Author Affiliations


Applied Optics, Vol. 51, Issue 31, pp. 7560-7565 (2012)
http://dx.doi.org/10.1364/AO.51.007560


View Full Text Article

Enhanced HTML    Acrobat PDF (259 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Avalanche diodes (ADs) are widely used to count photons in quantum interferometry. In reality they do not count photons, but click once when a bunch of photons arrives in a light pulse. We model this behavior in typical quantum optical interferometers like the Hong–Ou–Mandel beam splitter and the Mach–Zehnder interferometer, and compare it with the behavior of the photon-number-resolving (PNR) detector and the Hanbury-Brown–Twiss detector in these measuring devices. Our results show that quantum interferometric measurements with biphotons could be performed with single ADs, if the noise of the diodes could be reduced. Even a single PNR detector can be used in these interferometers, if the variance of the measurement is determined, since it reveals information about biphoton interference in contrast to the single detector counting rate.

© 2012 Optical Society of America

OCIS Codes
(030.0030) Coherence and statistical optics : Coherence and statistical optics
(040.1345) Detectors : Avalanche photodiodes (APDs)

ToC Category:
Detectors

History
Original Manuscript: July 3, 2012
Revised Manuscript: October 1, 2012
Manuscript Accepted: October 1, 2012
Published: October 25, 2012

Citation
Kay Schmid, Erna Frins, Wolfgang Dultz, and Heidrun Schmitzer, "Modeling the avalanche diode as a photon detector in quantum optical interferometers," Appl. Opt. 51, 7560-7565 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-31-7560


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Ghioni and G. Ripamonti, “Improving the performance of commercially available Geiger-mode avalanche photodiodes,” Rev. Sci. Instrum. 62, 163–167 (1991). [CrossRef]
  2. I. Rech, I. Labanca, M. Ghioni, and S. Cov, “Modified single photon counting modules for optimal timing performance,” Rev. Sci. Instrum. 77, 033104 (2006). [CrossRef]
  3. M. Ghioni, A. Gulinatti, I. Rech, F. Zappa, and S. Cova, “Progress in silicon single-photon avalanche diodes,” IEEE J. Sel. Top. Quantum Electron. 13, 852–862 (2007). [CrossRef]
  4. D. Rosenberg, A. Lita, A. Miller, and S. Nam, “Noise-free high-efficiency photon-number-resolving detectors,” Phys. Rev. A 71, 061803 (2005). [CrossRef]
  5. D. Fukuda, G. Fujii, A. Yoshizawa, H. Tsuchida, R. Damayanthi, H. Takahashi, S. Inoue, and M. Ohkubo, “High speed photon number resolving detectors with titanium transition edge sensor,” J. Low Temp. Phys. 151, 100–105 (2008). [CrossRef]
  6. M. Fujiwara and M. Sasaki, “Photon-number-resolving detection at a telecommunications wavelength with a charge-integrating photo detector,” Opt. Lett. 31, 691–693(2006). [CrossRef]
  7. D. Achilles, C. Silberhorn, C. Sliwa, K. Banaszek, I. Walmsley, M. Fitch, B. Jacobs, T. Pittman, and J. Franson, “Photon-number-resolving detection using time-multiplexing,” J. Mod. Opt. 15, 1499–1515 (2004).
  8. L. Jiang, E. Dauler, and J. Chang, “Photon-number-resolving detector with 10 bits of resolution,” Phys. Rev. A 75, 062325 (2007). [CrossRef]
  9. D. Marcuse, Principles of Quantum Electronics (Academic, 1980).
  10. O. Keller, “On the theory of spatial localization of photons,” Phys. Rep. 411, 1–232 (2005). [CrossRef]
  11. C. Hong, Z. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987). [CrossRef]
  12. A. Aspect, J. Dalibard, and G. Roger, “Experimental test of Bell’s inequalities using time-varying analyzers,” Phys. Rev. Lett. 49, 1804–1807 (1982). [CrossRef]
  13. R. Glauber, “Coherence and quantum detection,” in Proceedings of the International School Enrico Fermi “Quantum Optics” (Academic, 1969), Vol. XLII, pp. 15–56.
  14. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).
  15. A. Feito, J. Lundeen, H. Coldenstrod-Ronge, J. Eisert, M. Plenio, and I. Walmsley, “Measuring measurements: theory and practice,” New J. Phys. 11, 093038 (2009).
  16. Y. Shih, “Entangled biphoton source property and preparation,” Rep. Prog. Phys. 66, 1009–1044 (2003). [CrossRef]
  17. R. Hanbury Brown and R. Q. Twiss, “Interferometry of the intensity fluctuations of light, Part I,” Proc. R. Soc. Lond. Ser. A 242, 300–324 (1957). [CrossRef]
  18. R. Hanbury Brown and R. Q. Twiss, “Interferometry of the intensity fluctuations of light, Part II,” Proc. R. Soc. Lond. Ser. A 243, 291–319 (1958). [CrossRef]
  19. K. Siebert, H. Schmitzer, and W. Dultz, “Measurement of the helicity of photon pairs using the optical Berry phase,” Phys. Lett. A 300, 341–347 (2002). [CrossRef]
  20. K. Schmid, H. Becker, W. Dultz, W. Martienssen, M. Kempe, and H. Schmitzer, “Interferometric optical path measurements of a glass wedge with single photons and biphotons,” Opt. Lett. 32, 2257–2259 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited