OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 32 — Nov. 10, 2012
  • pp: 7771–7775

Refractive index investigation of poly(vinyl alcohol) films with TiO2 nanoparticle inclusions

Temenuzhka Yovcheva, Ivanka Vlaeva, Ivan Bodurov, Violeta Dragostinova, and Simeon Sainov  »View Author Affiliations

Applied Optics, Vol. 51, Issue 32, pp. 7771-7775 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (246 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The refractive index (RI) of polymer nanocomposite of poly(vinyl alcohol) films with TiO2 nanoparticle inclusions with low concentration up to 1.2 wt. % was investigated. Accurate refractometric measurements, by a specially designed laser microrefractometer, were performed at wavelengths 532 and 632.8 nm. The influence of TiO2 concentration on the RI dispersion curves was predicted based on the well-known Sellmeier model. The theoretical analysis, in a small filling factor approximation, was performed, and a relation between the effective RI of the nanocomposite and weight concentrations of the TiO2 nanofiller was derived. The experimental values were approximated by two different functions (linear and a quadratic polynom). The polynomial approximation yields better result, where R2=0.90.

© 2012 Optical Society of America

OCIS Codes
(000.2190) General : Experimental physics
(000.3860) General : Mathematical methods in physics
(160.5470) Materials : Polymers
(160.4236) Materials : Nanomaterials

ToC Category:

Original Manuscript: August 21, 2012
Revised Manuscript: October 5, 2012
Manuscript Accepted: October 9, 2012
Published: November 7, 2012

Temenuzhka Yovcheva, Ivanka Vlaeva, Ivan Bodurov, Violeta Dragostinova, and Simeon Sainov, "Refractive index investigation of poly(vinyl alcohol) films with TiO2 nanoparticle inclusions," Appl. Opt. 51, 7771-7775 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. Wang and G. Wilkes, “New Ti-PTMO and Tr-PTMO creamer hybrid materials prepared by the sol-gel method: synthesis and characterization,” J. Polym. Sci. A 29, 905–909 (1991). [CrossRef]
  2. S. Lee, H.-J. Shin, S.-M. Yoon, D. Vi, J.-Y. Choi, and U. Paik, “Refractive index engineering of transparent ZrO2-polydimethilsiloxane nanocomposites,” J. Mater. Chem. 18, 1751–1755 (2008). [CrossRef]
  3. D. R. Lide, Handbook of Chemistry and Physics (CRS, 1995).
  4. B. Wang, G. Wilkes, J. Hedrick, S. Liptak, and J. McGrath, “New high refractive index organic/inorganic hybrid materials from sol-gel processing,” Macromolecules 24, 1751–1755 (1991). [CrossRef]
  5. H.-W. Su and W. C. Chen, “High refractive index polyimide-nanocrystalline-titania hybrid optical materials,” J. Mater. Chem. 18, 1139–1145 (2008). [CrossRef]
  6. L.-H. Lee and W.-C. Chen, “High-refractive-index thin films prepared from trialkoxilane-capped poly(methyl methacrylate)-titania materials,” Chem. Mater. 13, 1137–1142 (2001). [CrossRef]
  7. W.-L. Chang, H.-W. Su, and W.-C. Chen, “Synthesis and properties of photosensitive polyimide-nanocrystalline titania optical thin films,” Eur. Polym. J. 45, 2749–2759 (2009). [CrossRef]
  8. J. L. H. Chau, Y.-M. Lin, A.-K. Li, W.-F. Su, K.-S. Chang, S. L.-C. Hsu, and T.-L. Li, “Transparent high refractive index nanocomposite thin films,” Mater. Lett. 61, 2908–2910 (2007). [CrossRef]
  9. C.-C. Chang and W.-C. Chen, “High-refractive-index thin films prepared from aminoalkoxysilane-capped pyromellitic dianhydride-titania hybrid materials,” J. Polym. Sci. A 39, 3419–3427 (2001). [CrossRef]
  10. Y. Imai, A. Terahara, Y. Hakuta, K. Matsui, H. Hayashi, and N. Ueno, “Transparent poly(bisphenol A carbonate)-based nanocomposites with high refractive index nanoparticles,” Eur. Polym. J. 45, 630–638 (2009). [CrossRef]
  11. S. Sainov, “Laser microrefractometer,” Rev. Sci. Instrum. 62, 3106–3107 (1991). [CrossRef]
  12. A. Reyes-Coronado, A. García-Valenzuela, C. Sánchez-Pérez, and R. G. Barrera, “Measurement of the effective refractive index of a turbid colloidal suspension using light refraction,” New J. Phys. 7, 89 (2005). [CrossRef]
  13. J. Lafait, S. Berthier, Ch. Andraud, V. Reilon, and J. Boulenguez, “Physical colors in cultural heritage: surface plasmons in glass,” C. R. Physique 10, 649–659 (2009). [CrossRef]
  14. D. A. G. Bruggeman, “Berechnung verschieder physikalischer Konstanten von heterogenen Substanzen,” Ann. Phys. 416, 636–664 (1935). [CrossRef]
  15. D. E. Aspnes, “Local-field effects and effective-medium theory: a microscopic perspective,” Am. J. Phys. 50, 704–709 (1982). [CrossRef]
  16. V. I. Odelevskii, “Calculation of general conductivity of heterogeneous systems,” J. Tech. Phys. 21, 667–685 (1953), in Russian.
  17. J. C. Maxwell Garnett, “Colours in metal glasses and in metallic films,” Phil. Trans. R. Soc. A 203, 385–420 (1904). [CrossRef]
  18. R. Ruppin, “Validity range of Maxwell-Garnett theory,” Phys. Status Solidi B 87, 619–624 (1978). [CrossRef]
  19. C. G. Granqvist and O. Hunderi, “Optical properties of ultrafine gold particles,” Phys. Rev. B 16, 3513–3534 (1977). [CrossRef]
  20. J. D. Jackson, Classical Electrodynamics (Wiley, 1962).
  21. L. Jylhä and A. Sihvola, “Equation for the effective permittivity of particle-filled composites for material design applications,” J. Phys. D. 40, 4966–4973 (2007). [CrossRef]
  22. R. J. Jimenéz Riobóo, A. De Andrés, A. Kubacka, M. Fernández-García, M. L. Cerrada, C. Serrano, and M. Fernández-García, “Macromolecular nanotechnology—influence of nanoparticles on elastic and optical properties of a polymer matrix: hypersonic studies on ethylene–vinyl alcohol copolymer–titania nanocomposites,” Eur. Polym. J. 46, 397–403 (2010). [CrossRef]
  23. A. García-Valenzuela, R. G. Barrera, C. Sánchez-Pérez, A. Reyes-Coronado, and E. R. Méndez, “Coherent reflection of light from a turbid suspension of particles in an internal-reflection configuration: theory versus experiment,” Opt. Express 13, 6723–6737 (2005). [CrossRef]
  24. Ul. Diebold, “The surface science of titania dioxide,” Surf. Sci. Rep. 48, 53–229 (2003). [CrossRef]
  25. J. Singh, Optical Properties of Condensed Matter and Applications (Wiley-VCH, 2006).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited