OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 32 — Nov. 10, 2012
  • pp: 7826–7833

Bulk laser-induced damage threshold of titanium-doped sapphire crystals

B. Bussière, O. Utéza, N. Sanner, M. Sentis, G. Riboulet, L. Vigroux, M. Commandré, F. Wagner, J.-Y. Natoli, and J.-P. Chambaret  »View Author Affiliations


Applied Optics, Vol. 51, Issue 32, pp. 7826-7833 (2012)
http://dx.doi.org/10.1364/AO.51.007826


View Full Text Article

Enhanced HTML    Acrobat PDF (530 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The bulk laser-induced damage threshold (LIDT) fluence of Ti:sapphire is determined under single-pulse irradiation from the femtosecond to nanosecond temporal regimes in the visible and near-infrared spectral domains. In the range of explored laser conditions, the LIDT fluence increases with both pulse duration and wavelength. The results are also compared to laser interaction with sapphire samples and show an increased resistance to laser damage when the material is doped with Ti 3 + ions. These conclusions are of interest for robust operation of high-peak-power femtosecond Ti:sapphire laser chains.

© 2012 Optical Society of America

OCIS Codes
(140.3330) Lasers and laser optics : Laser damage
(140.3380) Lasers and laser optics : Laser materials
(140.3440) Lasers and laser optics : Laser-induced breakdown
(160.3380) Materials : Laser materials
(190.4180) Nonlinear optics : Multiphoton processes
(140.3538) Lasers and laser optics : Lasers, pulsed

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: August 23, 2012
Manuscript Accepted: September 10, 2012
Published: November 9, 2012

Citation
B. Bussière, O. Utéza, N. Sanner, M. Sentis, G. Riboulet, L. Vigroux, M. Commandré, F. Wagner, J.-Y. Natoli, and J.-P. Chambaret, "Bulk laser-induced damage threshold of titanium-doped sapphire crystals," Appl. Opt. 51, 7826-7833 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-32-7826


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. Mourou, T. Tajima, and S. Bulanov, “Optics in the relativistic regime,” Rev. Mod. Phys. 78, 309–371 (2006). [CrossRef]
  2. C. R. Giuliano and L. D. Hess, “Damage threshold studies in ruby and sapphire,” Proc. SPIE 341, 76–89 (1970).
  3. S. C. Seitel and L. G. DeShazer, “Laser-induced damage to titanium-doped sapphire using 532 nm wavelength pulses of 10 ns duration,” Proc. SPIE 752, 65–69 (1987). [CrossRef]
  4. Y. Sun, Q. Zhang, and H. Gong, “Polarized 10 ns frequency-doubled Nd:YAG laser induced damage to titanium-doped sapphire,” Proc. SPIE 2114, 166–177 (1993). [CrossRef]
  5. G. Nath and G. Walda, “Strong reduction of laser produced damage in sapphire and ruby by doping with TiO2,” Z. Naturforsch. A 23, 624–625 (1968).
  6. F. Canova, J.-P. Chambaret, G. Mourou, M. Sentis, O. Utéza, P. Delaporte, T. Itina, J.-Y. Natoli, M. Commandré, and C. Amra, “Complete characterization of damage threshold in titanium doped sapphire crystals with nanosecond, picosecond and femtosecond laser pulses,” Proc. SPIE 5991, 639–645 (2005). [CrossRef]
  7. P. F. Moulton, “Spectroscopic and laser characteristics of Ti:Al2O3,” J. Opt. Soc. Am. B 3, 125–133 (1986). [CrossRef]
  8. M. A. Verneuil, “Mémoire sur la reproduction artificielle du rubis par fusion,” Ann. Chim. Phys. (8th Series) 3, 20–48 (1904).
  9. H. J. Scheel, “The development of crystal growth technology,” in Crystal Growth TechnologyH. J. Scheel and T. Fukuda, eds. (Wiley, 2003), pp. 3–14.
  10. C. P. Khattak and F. Schmid, “Growth of the world’s largest sapphire crystals,” J. Cryst. Growth 225, 572–579 (2001). [CrossRef]
  11. E. R. Dobrovinskaya, L. A. Lytvynov, and V. Pishchik, Sapphire: Materials, Manufacturing, Applications (Springer, 2009).
  12. Standard ISO 11254-1, “Determination of laser-damage threshold of optical surfaces. 1. 1-on-1 test” (International Organization for Standardization, 2000).
  13. L. Gallais and J-Y. Natoli, “Optimized metrology for laser-damage measurement: application to multiparameter study,” Appl. Opt. 42, 960–971 (2003). [CrossRef]
  14. L. Lamaignère, T. Donval, M. Loiseau, J. C. Poncetta, G. Razé, C. Meslin, B. Bertussi, and H. Bercegol, “Accurate measurements of laser-induced bulk damage density,” Meas. Sci. Technol. 20, 095701 (2009). [CrossRef]
  15. N. Sanner, O. Utéza, B. Bussière, G. Coustillier, A. Leray, T. Itina, and M. Sentis, “Measurement of femtosecond laser-induced damage and ablation thresholds in dielectrics,” Appl. Phys. A 94, 889–897 (2009). [CrossRef]
  16. F. R. Wagner, G. Duchateau, A. Hildenbrand, J-Y. Natoli, and M. Commandré, “Model for nanosecond laser-induced damage in potassium titanyl phosphate crystals,” Appl. Phys. Lett. 99, 231111 (2011). [CrossRef]
  17. B. Chimier, O. Utéza, N. Sanner, M. Sentis, T. Itina, P. Lassonde, F. Légaré, F. Vidal, and J. C. Kieffer, “Damage and ablation thresholds of fused silica in femtosecond regime: relevant physical criteria and mechanisms,” Phys. Rev. B. 84, 094104 (2011). [CrossRef]
  18. A. E. Siegman, Lasers (University Science, 1986).
  19. B. Bussière, O. Utéza, N. Sanner, M. Sentis, G. Riboulet, L. Vigroux, M. Commandré, F. Wagner, J.-Y. Natoli, and J.-P. Chambaret, “Laser-induced damage of sapphire and titanium sapphire doped crystals under femtosecond to nanosecond laser irradiation,” Proc. SPIE 7504, 75041N (2009). [CrossRef]
  20. B. Bussière, Etude des mécanismes d’endommagement par laser impulsionnel des cristaux de saphir dopé titane, Ph.D. thesis (Aix-Marseille University, 2010), http://www.theses.fr/2010AIX22070 .
  21. W. Koechner, Solid-State Laser Engineering, 5th ed. (Springer-Verlag, 1999).
  22. J. H. Marburger, “Self-focusing: theory,” Prog. Quantum Electron. 4, 35–110 (1975). [CrossRef]
  23. N. Sanner, O. Utéza, M. Sentis, P. Lassonde, F. Légaré, and J. C. Kieffer, “Towards determinism in surface damaging of dielectrics using few-cycle laser pulses,” Appl. Phys. Lett. 96, 071111 (2010). [CrossRef]
  24. A. P. Joglekar, H. Liu, G. J. Spooner, E. Meyhofer, G. Mourou, and A. J. Hunt, “A study of the deterministic character of optical damage by femtosecond laser pulses and applications to nanomachining,” Appl. Phys. B 77, 25–30 (2003). [CrossRef]
  25. W. L. Smith, J. H. Bechtel, and N. Bloembergen, “Picosecond laser-induced breakdown at 5321 and 3547 angström: observation of frequency-dependent behavior,” Phys. Rev. B 15, 4039–4055 (1977). [CrossRef]
  26. N. Bloembergen, “Laser-induced electric breakdown in solids,” IEEE J. Quantum Electron. 10, 375–386 (1974). [CrossRef]
  27. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond to femtosecond laser induced breakdown in dielectrics,” Phys. Rev. B 53, 1749–1761 (1996). [CrossRef]
  28. S. C. Jones, P. Braunlich, R. T. Casper, X.-A. Shen, and P. Kelly, “Recent progress on laser-induced modifications and intrinsic bulk damage of wide-gap optical materials,” Opt. Eng. 28, 1039–1068 (1989).
  29. M. J. Soileau, “Laser-induced damage to optical materials,” in Handbook of Optics, Volume IV: Optical Properties of Materials, Nonlinear Optics, Quantum OpticsM. Bass, 3rd ed. (McGraw-Hill, 2010), pp. 19.1–19.12.
  30. S. Ciraci and I. P. Batra, “Electronic-structure of alpha-alumina and its defect states,” Phys. Rev. B 28, 982–992 (1983). [CrossRef]
  31. S. K. Gayen, W. B. Wang, V. Petricevic, K. M. Yoo, and R. R. Alfano, “Picosecond excite-and-probe absorption measurement of the intra-E2gE3/2-state vibrational relaxation time in Ti3+:Al2O3,” Appl. Phys. Lett. 50, 1494–1496 (1987). [CrossRef]
  32. A. Schmid, P. Kelly, and P. Braunlich, “Optical breakdown in alkali halides,” Phys. Rev. B 16, 4569–4582 (1977). [CrossRef]
  33. P. Agostini and G. Petite, “Photoelectric effect under strong irradiation,” Contemp. Phys. 29, 57–77 (1988). [CrossRef]
  34. G. Petite, “Mécanismes fondamentaux de l’ablation laser femtoseconde,” in Lasers et Technologies Femtosecondes, M. Sentis and O. Utéza, eds. (Publications de l’Université de Saint-Etienne, 2005).
  35. L. V. Keldysh, “Ionization in the field of a strong electromagnetic wave,” Sov. Phys. JETP 20, 1307 (1965).
  36. R. French, “Electronic band structure of Al2O3, with comparison to AlON and AIN,” J. Am Ceram. Soc. 13, 471–489(1990). [CrossRef]
  37. B. Bertussi, J.-Y. Natoli, and M. Commandré, “Effect of polishing process on silica surface laser-induced damage threshold at 355 nm,” Opt. Commun. 242, 227–231 (2004). [CrossRef]
  38. A.-C. Tien, S. Backus, H. Kapteyn, M. Murnane, and G. Mourou, “Short-pulse laser damage in transparent materials as a function of pulse duration,” Phys. Rev. Lett. 82, 3883–3886 (1999). [CrossRef]
  39. O. Utéza, B. Bussière, F. Canova, J. P. Chambaret, P. Delaporte, T. Itina, and M. Sentis, “Laser-induced damage threshold of sapphire in nanosecond, picosecond and femtosecond regimes,” Appl. Surf. Sci. 254, 799–803 (2007). [CrossRef]
  40. L. D. Merckle, N. Koumvakalis, and M. Bass, “Laser-induced bulk damage in SiO2 at 1.064, 0.532 and 0.355 μm,” J. Appl. Phys. 55, 772–775 (1984). [CrossRef]
  41. C. W. Carr, H. B. Radousky, and S. G. Demos, “Wavelength dependence of laser-induced damage: determining the damage initiation mechanisms,” Phys. Rev. Lett. 91, 127402 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited