OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 32 — Nov. 10, 2012
  • pp: 7853–7857

Methods used to observe a dynamical quantum nonlocality effect in a twin Mach–Zehnder interferometer

Scott E. Spence, Allen D. Parks, and David A. Niemi  »View Author Affiliations


Applied Optics, Vol. 51, Issue 32, pp. 7853-7857 (2012)
http://dx.doi.org/10.1364/AO.51.007853


View Full Text Article

Enhanced HTML    Acrobat PDF (188 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Straightforward novel methods for stabilizing, tuning, and controlling a twin Mach–Zehnder interferometer for the purpose of observing a subtle dynamical quantum nonlocality effect in a recent optical experiment are presented and discussed. Weak measurements were required for observing a subtle quantum dynamical nonlocality effect that reveals itself in a change of a weak value. Consequently, emphasis is placed upon describing the approaches to apparatus stabilization and interaction strength control between photons and the apparatus. The details discussed in this paper should be of general interest to experimentalists engaging in weak measurement and weak value research.

OCIS Codes
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(260.0260) Physical optics : Physical optics
(270.0270) Quantum optics : Quantum optics

ToC Category:
Quantum Optics

History
Original Manuscript: August 14, 2012
Manuscript Accepted: September 27, 2012
Published: November 9, 2012

Citation
Scott E. Spence, Allen D. Parks, and David A. Niemi, "Methods used to observe a dynamical quantum nonlocality effect in a twin Mach–Zehnder interferometer," Appl. Opt. 51, 7853-7857 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-32-7853


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y. Aharonov, H. Pendleton, and A. Petersen, “Modular variables in quantum theory,” Int. J. Theor. Phys. 2, 213–230 (1969). [CrossRef]
  2. Y. Aharonov, H. Pendleton, and A. Petersen, “Deterministic quantum interference experiments,” Int. J. Theor. Phys. 3, 443–448 (1970). [CrossRef]
  3. S. Popescu, “Dynamical quantum non-locality,” Nat. Physics 6, 151–153 (2010). [CrossRef]
  4. S. Spence and A. Parks, “Experimental evidence for a dynamical non-locality induced effect in quantum interference using weak values,” Found. Phys. 42, 803–815 (2012). [CrossRef]
  5. J. Tollaksen, Y. Aharonov, A. Casher, T. Kaufherr, and S. Nussinov, “Quantum interference experiments, modular variables and weak measurements,” New J. Phys. 12, 013023 (2010). [CrossRef]
  6. A. Tonomura, J. Endo, T. Matsuda, T. Kawasaki, and H. Ezawa, “Demonstration of single-electron buildup of an interference pattern,” Am. J. Phys. 57, 117–120 (1989). [CrossRef]
  7. Y. Aharonov and D. Rohrlich, Quantum Paradoxes: Quantum Theory for the Perplexed (Wiley, 2005), pp. 67–73.
  8. I. Duck, P. Stevenson, and E. Sudarshan, “The sense in which a ‘weak measurement’ of a spin-1/2 particle’s spin component yields a value 100,” Phys. Rev. D 40, 2112–2117 (1989). [CrossRef]
  9. A. Parks, D. Cullin, and D. Stoudt, “Observation and measurement of an optical Aharonov-Albert-Vaidman effect,” Proc. R. Soc. A 454, 2997–3008 (1998). [CrossRef]
  10. K. Resch, J. Lundeen, and A. Steinberg, “Experimental realization of the quantum box problem,” Phys. Lett. A 324, 125–131 (2004). [CrossRef]
  11. F. McCormick, T. Cloonan, F. Tooley, A. Lentine, J. Sasian, J. Brubaker, R. Morrison, S. Walker, R. Crisci, R. Novotny, S. Hinterlong, H. Hinton, and E. Kerbis, “Six-stage digital free-space optical switching network using symmetric self-electro-optic-effect devices,” Appl. Opt. 32, 5153–5171 (1993). [CrossRef]
  12. Y. Aharonov, D. Albert, and L. Vaidman, “How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100,” Phys. Rev. Lett. 60, 1351–1354 (1988). [CrossRef]
  13. Y. Aharonov, A. Botero, S. Popescu, B. Reznik, and J. Tollaksen, “Revisiting Hardy’s paradox: counterfactual statements, real measurements, entanglement and weak values,” Phys. Lett. A 301, 130–138 (2002). [CrossRef]
  14. J. Lundeen, B. Sutherland, A. Patel, C. Stewart, and C. Bamber, “Direct measurement of the quantum wavefunction,” Nature 474, 188–191 (2011). [CrossRef]
  15. Y. Shikano, “Theory of ‘weak value’ and quantum mechanical measurements,” in Measurements in Quantum Mechanics M. R. Pahlavani, ed. (InTech, 2012), pp. 75–100.
  16. A. Kofman, S. Ashhab, and F. Nori, “Nonperturbative theory of weak pre- and post-selected measurements,” Phys. Rep. 520, 43–133 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited