OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 33 — Nov. 20, 2012
  • pp: 7920–7933

Design of highly efficient transmission gratings with deep etched triangular grooves

Xufeng Jing, Junchao Zhang, Shangzhong Jin, Pei Liang, and Ying Tian  »View Author Affiliations


Applied Optics, Vol. 51, Issue 33, pp. 7920-7933 (2012)
http://dx.doi.org/10.1364/AO.51.007920


View Full Text Article

Enhanced HTML    Acrobat PDF (2394 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The design of highly efficient fused silica transmission gratings with deep-etched triangular-shaped grooves in the 1st order diffraction is realized by the rigorous coupled wave analysis (RCWA). The antireflective effect of a subwavelength triangular-groove grating with gradient effective refractive index results in the higher diffraction efficiency (>99.9%). The performance of the presented gratings is clearly better than traditional rectangular and blazed ones. The gratings are designed under Littrow mounting at a wavelength of 1064 nm to be used in high-power laser systems. A detailed fabrication tolerance, covering not only the errors in height but also the errors in the lateral dimension, is demonstrated. The physical process of the diffraction characteristics for such a triangular-groove grating can be well explained by the simplified modal method based on two-beam interference of the first two propagating modes excited by the incident wave. Based on the fact that the transmittance derived from the modal method is in good agreement with that calculated by the RCWA, the simplified modal method can be effectively utilized as an easily designed tool of the triangular-shaped gratings.

© 2012 Optical Society of America

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Diffraction and Gratings

History
Original Manuscript: August 16, 2012
Revised Manuscript: October 11, 2012
Manuscript Accepted: October 12, 2012
Published: November 14, 2012

Citation
Xufeng Jing, Junchao Zhang, Shangzhong Jin, Pei Liang, and Ying Tian, "Design of highly efficient transmission gratings with deep etched triangular grooves," Appl. Opt. 51, 7920-7933 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-33-7920


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. T. Nguyen, B. W. Shore, S. J. Bryan, J. A. Britten, R. D. Boyd, and M. D. Perry, “High-efficiency fused-silica transmission gratings,” Opt. Lett. 22, 142–144 (1997). [CrossRef]
  2. R. D. Boyd, J. A. Britten, D. E. Decker, B. W. Shore, B. C. Stuart, M. D. Perry, and L. Li, “High-efficiency metallic diffraction gratings for laser applications,” Appl. Opt. 34, 1697–1706 (1995). [CrossRef]
  3. B. W. Shore, M. D. Perry, J. A. Britten, R. D. Boyd, M. D. Feit, H. T. Nguyen, R. Chow, and G. E. Loomis, “Design of high efficiency dielectric reflection gratings,” J. Opt. Soc. Am. A 14, 1124–1136 (1997). [CrossRef]
  4. K. Hehl, J. Bischoff, U. Mohaupt, M. Palme, B. Schnabel, L. Wenke, R. Bodefeld, W. Theobald, E. Welsch, R. Sauerbrey, and H. Heyer, “High-efficiency dielectric reflection gratings: design, fabrication, and analysis,” Appl. Opt. 38, 6257–6271 (1999). [CrossRef]
  5. M. D. Perry, R. D. Boyd, J. A. Britten, D. Decker, B. W. Shore, C. Shannon, and E. Shults, “High-efficiency multilayer dielectric diffraction gratings,” Opt. Lett. 20, 940–942 (1995). [CrossRef]
  6. J. Néauport, E. Journot, G. Gaborit, and P. Bouchut, “Design, optical characterization, and operation of large transmission gratings for the laser integration line and laser megajoule facilities,” Appl. Opt. 44, 3143–3152 (2005). [CrossRef]
  7. S. Wang, C. Zhou, Y. Zhang, and H. Ru, “Deep-etched high-density fused-silica transmission gratings with high efficiency at a wavelength of 1550 nm,” Appl. Opt. 45, 2567–2571 (2006). [CrossRef]
  8. T. Clausnitzer, J. Limpert, K. Zollner, H. Zellmer, H. J. Fuchs, E. B. Kley, A. Tunnermann, M. Jupe, and D. Ristau, “Highly efficient transmission gratings in fused silica for chirped pulse amplification systems,” Appl. Opt. 42, 6934–6938 (2003). [CrossRef]
  9. T. Clausnitzer, T. Kämpfe, E.-B. Kley, A. Tünnermann, A. V. Tishchenko, and O. Parriaux, “Highly-dispersive dielectric transmission gratings with 100% diffraction efficiency,” Opt. Express 16, 5577–5584 (2008). [CrossRef]
  10. M. G. Moharam and T. K. Gaylord, “Diffraction analysis of dielectric surface-relief gratings,” J. Opt. Soc. Am. 72, 1385–1391 (1982). [CrossRef]
  11. X. Jing, J. Ma, S. Liu, Y. Jin, H. He, J. Shao, and Z. Fan, “Analysis and design of transmittance for an antireflective surface microstructure,” Opt. Express 17, 16119–16134 (2009). [CrossRef]
  12. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12, 1068–1076 (1995). [CrossRef]
  13. J. Y. Ma, S. J. Liu, Y. X. Jin, C. Xu, J. D. Shao, and Z. X. Fan, “Novel method for design of surface relief guided-mode resonant gratings at normal incidence,” Opt. Commun. 281, 3295–3300 (2008). [CrossRef]
  14. L. F. Li, “Use of Fourier series in the analysis of discontinuous periodic structures,” J. Opt. Soc. Am. A 13, 1870–1876 (1996). [CrossRef]
  15. P. Lalanne, “Effective properties and band structures of lamellar subwavelength crystals: plane-wave method revisited,” Phys. Rev. B 58, 9801–9807 (1998). [CrossRef]
  16. P. Lu, C. Zhou, J. Feng, and H. Cao, “Unified design of wavelength-independent deep-etched fused-silica gratings,” Opt. Commun. 283, 4135–4140 (2010). [CrossRef]
  17. Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasiomnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2, 770–774 (2007). [CrossRef]
  18. S. Fahr, T. Clausnitzer, E.-B. Kley, and A. Tünnermann, “Reflective diffractive beam splitter for laser interferometers,” Appl. Opt. 46, 6092–6095 (2007). [CrossRef]
  19. B. Wang, C. Zhou, J. Feng, H. Ru, and J. Zheng, “Wideband two-port beam splitter of a binary fused silica phase grating,” Appl. Opt. 47, 4004–4008 (2008). [CrossRef]
  20. M. Ahn, R. K. Heilmann, and M. L. Schattenburg, “Fabrication of ultrahigh aspect ratio freestanding gratings on silicon-on-insulator wafers,” J. Vac. Sci. Technol. B 25, 2593–2597 (2007). [CrossRef]
  21. J. Feng, C. Zhou, H. Cao, and P. Lv, “Deep etched sinusoidal polarizing beam splitter grating,” Appl. Opt. 49, 1739–1743 (2010). [CrossRef]
  22. L. Li, “New formulation of the Fourier modal method for crossed surface-relief gratings,” J. Opt. Soc. Am. A 14, 2758–2767 (1997). [CrossRef]
  23. I. C. Botten, M. S. Craig, R. C. McPhedran, J. L. Adams, and J. R. Andrewartha, “The dielectric lamellar diffraction grating,” Opt. Acta. 28, 413–428 (1981). [CrossRef]
  24. J. Zheng, C. Zhou, B. Wang, and J. Feng, “Beam splitting of low-contrast binary gratings under second Bragg angle incidence,” J. Opt. Soc. Am. A 25, 1075–1083 (2008). [CrossRef]
  25. T. Clausnitzer, T. Kämpfe, E.-B. Kley, A. Tünnermann, U. Peschel, A. V. Tishchenko, and O. Parriaux, “An intelligible explanation of highly-efficient diffraction in deep dielectric rectangular transmission gratings,” Opt. Express 13, 10448–10456 (2005). [CrossRef]
  26. R. E. Collin, “Reflection and transmission at a slotted dielectric interface,” Can. J. Phys. 34, 398–411 (1956). [CrossRef]
  27. S. M. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. JETP 2, 466–475 (1956).
  28. A. V. Tishchenko, “Phenomenological representation of deep and high contrast lamellar gratings by means of the modal method,” Opt. Quantum Electron. 37, 309–330 (2005). [CrossRef]
  29. J. Feng, C. Zhou, J. Zheng, H. Cao, and P. Lv, “Dual-function beam splitter of a subwavelength fused silica grating,” Appl. Opt. 48, 2697–2701 (2009). [CrossRef]
  30. H. Zhao and D. Yuan, “Design of fused silica rectangular transmission gratings for polarizing beam splitter based on modal method,” Appl. Opt. 49, 759–763 (2010). [CrossRef]
  31. J. Feng, C. Zhou, B. Wang, J. Zheng, W. Jia, H. Cao, and P. Lv, “Three-port beam splitter of a binary fused silica grating,” Appl. Opt. 47, 6638–6643 (2008). [CrossRef]
  32. E. Garnet, A. V. Tishchenko, and O. Parriaux, “Cancellation of the zeroth order in a phase mask by mode interplay in a high index contrast binary grating,” Appl. Opt. 46, 6719–6726 (2007). [CrossRef]
  33. T. Clausnitzer, T. Kämpfe, E.-B. Kley, A. Tünnermann, A. Tishchenko, and O. Parriaux, “Investigation of the polarization-dependent diffraction of deep dielectric rectangular transmission gratings illuminated in Littrow mounting,” Appl. Opt. 46, 819–826 (2007). [CrossRef]
  34. J. Zheng, C. Zhou, J. Feng, and B. Wang, “Polarizing beam splitter of deep-etched triangular groove fused silica gratings,” Opt. Lett. 33, 1554–1556 (2008). [CrossRef]
  35. Y. Ono, Y. Kimura, Y. Ohta, and N. Nishida, “Antireflection effect in ultrahigh spatial-frequency holographic relief gratings,” Appl. Opt. 26, 1142–1146 (1987). [CrossRef]
  36. R. C. Enger and S. K. Case, “Optical elements with ultrahigh spatial frequency surface corrugation,” Appl. Opt. 22, 3220–3228 (1983). [CrossRef]
  37. F. Xu, R. Tyan, P. Sun, Y. Fainman, C. Cheng, and A. Scherer, “Fabrication, modeling, and characterization of form-birefringent nanostructures,” Opt. Lett. 20, 2457–2459 (1995). [CrossRef]
  38. B. Wang, C. Zhou, S. Wang, and J. Feng, “Polarizing beam splitter of a deep-etched fused silica grating,” Opt. Lett. 32, 1299–1301 (2007). [CrossRef]
  39. W. Wang, C. Zhou, and W. Jia, “High-fidelity replication of Dammann gratings using soft lithography,” Appl. Opt. 47, 1427–1429 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited