OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 33 — Nov. 20, 2012
  • pp: 8034–8040

Index mismatch aberration correction over long working distances using spatial light modulation

Bergin Gjonaj, Patrick Johnson, Mischa Bonn, and Katrin F. Domke  »View Author Affiliations


Applied Optics, Vol. 51, Issue 33, pp. 8034-8040 (2012)
http://dx.doi.org/10.1364/AO.51.008034


View Full Text Article

Enhanced HTML    Acrobat PDF (983 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

For many microscopy applications, millimeters-long free working distances (LWD) are required. However, the high resolution and contrast of LWD objectives operated in air are lost when introducing glass and/or liquid with the sample. We propose to use spatial light modulation to correct for such beam aberrations caused by refractive index mismatches. Focusing a monochromatic laser beam with a 10 mm working distance air objective (50×, 0.5 NA) through air, glass, and water, we manage to restore a sharp, intense focus (FWHM<2λ) by adaptive beam phase shaping. Our approach offers a practical and cost-effective route to high resolution and contrast microscopy using LWD air objectives, extending their usage beyond applications in air.

© 2012 Optical Society of America

OCIS Codes
(220.1000) Optical design and fabrication : Aberration compensation
(110.1080) Imaging systems : Active or adaptive optics

ToC Category:
Imaging Systems

History
Original Manuscript: August 8, 2012
Revised Manuscript: September 18, 2012
Manuscript Accepted: October 8, 2012
Published: November 20, 2012

Virtual Issues
Vol. 7, Iss. 12 Virtual Journal for Biomedical Optics

Citation
Bergin Gjonaj, Patrick Johnson, Mischa Bonn, and Katrin F. Domke, "Index mismatch aberration correction over long working distances using spatial light modulation," Appl. Opt. 51, 8034-8040 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-33-8034


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Gundlach, “Phase contrast and differential interference contrast instrumentation and applications in cell, developmental, and marine biology,” Opt. Eng. 32, 3223–3228(1993). [CrossRef]
  2. T. A. Nenasheva, T. Carter, and G. I. Mashanov, “Automatic tracking of individual migrating cells using low-magnification dark-field microscopy,” J. Microsc. 246, 83–88 (2012). [CrossRef]
  3. F. de Lange, A. Cambi, R. Huijbens, B. de Bakker, W. Rensen, M. Garcia-Parajo, N. van Hulst, and C. G. Figdor, “Cell biology beyond the diffraction limit: near-field scanning optical microscopy,” J. Cell Sci. 114, 4154–4160 (2001).
  4. J. M. Bélisle, L. A. Levin, and S. Costantino, “High-content neurite development study using optically patterned substrates,” PLoS One 7, e35911 (2012). [CrossRef]
  5. P. P. Mondal and A. Diaspro, “Simultaneous multilayer scanning and detection for multiphoton fluorescence microscopy,” Sci. Rep. 1, 149 (2011). [CrossRef]
  6. R. L. Price and W. G. Jerome, eds., Basic Confocal Microscopy (Springer, 2011).
  7. T. Wang, A. F. W. van der Steen, and G. van Soest, “Numerical analysis of astigmatism correction in gradient refractive index lens based optical coherence tomography catheters,” Appl. Opt. 51, 5244–5252 (2012). [CrossRef]
  8. R. J. Cook, A. Azzopardi, I. D. Thompson, and T. F. Watson, “Real-time confocal imaging, during active air abrasion—substrate cutting,” J. Microsc. 203, 199–207 (2001). [CrossRef]
  9. M. J. Booth, “Adaptive optics in microscopy,” Phil. Trans. R. Soc. A 365, 2829–2843 (2007). [CrossRef]
  10. C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “What spatial light modulators can do for optical microscopy,” Laser Photon. Rev. 5, 81–101 (2011). [CrossRef]
  11. J. J. Schwartz, S. Stavrakis, and S. R. Quake, “Colloidal lenses allow high-temperature single-molecule imaging and improve fluorophore photostability,” Nat. Nanotechnol. 5, 127–132 (2010). [CrossRef]
  12. M. Booth, M. Neil, R. Juskaitis, and T. Wilson, “Adaptive aberration correction in a confocal microscope,” Proc. Natl. Acad. Sci. U.S.A. 99, 5788–5792 (2002). [CrossRef]
  13. S. P. Poland, A. J. Wright, and J. M. Girkin, “Evaluation of fitness parameters used in an iterative approach to aberration correction in optical sectioning microscopy,” Appl. Opt. 47, 731–736 (2008). [CrossRef]
  14. T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics 4, 388–394 (2010). [CrossRef]
  15. M. Shaw, S. Hall, S. Knox, R. Stevens, and C. Paterson, “Characterization of deformable mirrors for spherical aberration correction in optical sectioning microscopy,” Opt. Express 18, 6900–6913 (2010). [CrossRef]
  16. J. Scrimgeour and J. E. Curtis, “Aberration correction in wide-field fluorescence microscopy by segmented-pupil image interferometry,” Opt. Express 20, 14534–14541 (2012). [CrossRef]
  17. H. Itoh, N. Matsumoto, and T. Inoue, “Spherical aberration correction suitable for a wavefront controller,” Opt. Express 17, 14367–14373 (2009). [CrossRef]
  18. B. P. Cumming, A. Jesacher, M. J. Booth, T. Wilson, and M. Gu, “Adaptive aberration compensation for three-dimensional micro-fabrication of photonic crystals in lithium niobate,” Opt. Express 19, 9419–9425 (2011). [CrossRef]
  19. E. G. can Putten, I. M. Vellekoop, and A. P. Mosk, “Spatial amplitude and phase modulation using commercial twisted nematic LCDs,” Appl. Opt. 47, 2076–2081 (2008). [CrossRef]
  20. I. M. Vellekoop and A. P. Mosk, “Phase control algorithms for focusing light through turbid media,” Opt. Commun. 281, 3071–3080 (2008). [CrossRef]
  21. D. E. Milkie, E. Betzig, and N. Ji, “Pupil-segmentation-based adaptive optical microscopy with full-pupil illumination,” Opt. Lett. 36, 4206–4208 (2011). [CrossRef]
  22. P. Kner, J. Sedat, D. Agard, and Z. Kam, “High-resolution wide-field microscopy with adaptive optics for spherical aberration correction and motionless focusing,” J. Microsc. 237, 136–147 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited