OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 33 — Nov. 20, 2012
  • pp: 8047–8051

Optical properties of silicon titanium oxide mixtures prepared by metallic mode reactive sputtering

Daniel Rademacher, Günter Bräuer, Benjamin Fritz, and Michael Vergöhl  »View Author Affiliations

Applied Optics, Vol. 51, Issue 33, pp. 8047-8051 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (533 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper different SiO2-TiO2 mixtures are prepared by metallic mode reactive sputtering. The samples were sputtered from cylindrical targets in a sputter-up configuration using an additional plasma source for oxidization. The different ratios of SiO2 and TiO2 in the mixtures are prepared by a target sputtering power variation. Optical film properties of the mixtures such as refractive index, which is determined by ellipsometric measurements, and optical bandgap, which is measured by photometric (transmission) measurements, are investigated. The thin-film structure is investigated by x-ray diffraction analysis and the stress of the films is presented. It is shown that the metallic mode reactive sputtering in the present configuration is applicable to continuously tune optical and mechanical properties. Finally the sputtered mixed materials are compared with other optical standard materials such as Nb2O5, Ta2O5, HfO2, and Al2O3.

© 2012 Optical Society of America

OCIS Codes
(160.4760) Materials : Optical properties
(310.1860) Thin films : Deposition and fabrication
(310.4925) Thin films : Other properties (stress, chemical, etc.)

ToC Category:

Original Manuscript: August 7, 2012
Manuscript Accepted: October 5, 2012
Published: November 20, 2012

Daniel Rademacher, Günter Bräuer, Benjamin Fritz, and Michael Vergöhl, "Optical properties of silicon titanium oxide mixtures prepared by metallic mode reactive sputtering," Appl. Opt. 51, 8047-8051 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. A. Scobey, R. I. Seddon, J. W. Seeser, R. R. Austin, P. M. LeFebvre, and B. Manley, “Magnetron sputtering apparatus and process,” U.S. patent 4,851,095 (25July1989).
  2. J. W. Seeser, P. M. LeFebvre, B. P. Hichwa, J. P. Lehan, S. F. Rowlands, and T. H. Allen, “Metal-mode reactive sputtering: a new way to make thin film products,” in Proceedings of Society of Vacuum Coaters—35th Annual Technical Conference Proceedings (1992), Vol. 505, pp. 229–235.
  3. D. Rademacher, G. Bräuer, M. Vergöhl, B. Fritz, and T. Zickenrott, “New sputtering concept for optical precision coatings,” Proc. SPIE 8168, 81680O (2011). [CrossRef]
  4. D. Rademacher, S. Kreher, M. Rudin, M. Vergöhl, and T. Zickenrott, “Manufacturing of high-precision optical coatings using a novel sputtering system,” presented at the Society of Vacuum Coaters—55th Annual Technical Conference, Santa Clara, California, USA, 28 April–5 May 2012.
  5. W. R. Tinga, W. A. G. Voss, and D. F. Blossey, “Generalized approach to multiphase dielectric mixture theory,” J. Appl. Phys. 44, 3897–3902 (1973). [CrossRef]
  6. E. C. Chan and J. P. Marton, “Generalized Maxwell Garnett equations for rough surfaces,” J. Appl. Phys. 45, 5004–5007 (1974). [CrossRef]
  7. O. Stenzel, M. Schuermann, S. Wilbrandt, N. Kaiser, A. Tuennermann, M. Mende, H. Ehlers, D. Ristau, S. Bruns, M. Vergöhl, W. Riggers, M. Bischoff, and M. Held, “Optical and mechanical properties of oxide UV coatings, prepared by PVD techniques,” Proc. SPIE 8168, 81681W (2011). [CrossRef]
  8. M. Vergöhl, N. Malkomes, T. Staedler, T. Matthe, and U. Richter, “Ex situ and in situ spectroscopic ellipsometry of MF and DC-sputtered TiO2 and SiO2 films for process control,” Thin Solid Films 351, 42–47 (1999). [CrossRef]
  9. T. Kubart, J. Jensen, T. Nyberg, L. Liljeholm, D. Depla, and S. Berg, “Influence of the target composition on reactively sputtered titanium oxide films,” Vacuum 83, 1295–1298 (2009). [CrossRef]
  10. P. Frach, D. Gloess, K. Goedicke, M. Fahland, and W.-M. Gnehr, “High rate deposition of insulating TiO2 and conducting ITO films for optical and display applications,” Thin Solid Films 445, 251–258 (2003). [CrossRef]
  11. O. Stenzel, S. Wilbrandt, N. Kaiser, M. Vinnichenko, F. Munnik, A. Kolitsch, A. Chuvilin, U. Kaiser, J. Ebert, S. Jakobs, A. Kaless, S. Wuethrich, O. Treichel, B. Wunderlich, M. Bitzer, and M. Groesslm, “The correlation between mechanical stress, thermal shift and refractive index in HfO2, Nb2O5, Ta2O5 and SiO2 layers and its relation to the layer porosity,” Thin Solid Films 517, 6058–6068 (2009). [CrossRef]
  12. M. Scherer, J. Pistner, and W. Lehnert, “Innovative production of high quality optical coatings for applications in optics and optoelectronics,” Soc. Vacuum Coaters 47, 179–182 (2004).
  13. F. Gracia, F. Yubero, J. P. Holgado, J. P. Espinos, A. R. Gonzalez-Elipe, and T. Girardeau, “SiO2-TiO2 thin films with variable refractive index prepared by ion beam induced and plasma enhanced chemical vapor deposition,” Thin Solid Films 500, 19–26 (2006). [CrossRef]
  14. S. Srio, M. E. Melo Jorge, M. J. P. Maneira, and Y. Nunes, “Influence of O2 partial pressure on the growth of nanostructured anatase phase TiO2 thin films prepared by DC reactive magnetron sputtering,” Mater. Chem. Phys. 126, 73–81 (2011). [CrossRef]
  15. H. Ohsaki, Y. Shibayama, N. Yoshida, T. Watanabe, and S. Kanemaru, “Room-temperature crystallization of amorphous films by RF plasma treatment,” Thin Solid Films 517, 3092–3095 (2009). [CrossRef]
  16. B. Hunsche, M. Vergöhl, and A. Ritz, “Investigation of TiO2 based thin films deposited by reactive magnetron sputtering for use at high temperatures,” Thin Solid Films 502, 188–192 (2006). [CrossRef]
  17. B. Hunsche, M. Vergöhl, H. Neuhaeuser, F. Klose, B. Szyszka, and T. Mathe, “Effect of deposition parameters on optical and mechanical properties of MF- and DC-sputtered Nb2O5 films,” Thin Solid Films 392, 184–190 (2001). [CrossRef]
  18. S. Bruns, M. Vergöhl, O. Werner, and T. Wallendorf, “High rate deposition of mixed oxides by controlled reactive magnetron-sputtering from metallic targets,” Thin Solid Films 520, 4122–4126 (2012). [CrossRef]
  19. J. Szczyrbowski, G. Braeuer, M. Ruske, J. Bartella, J. Schroeder, and A. Zmelty, “Some properties of TiO2 layers prepared by medium frequency reactive sputtering,” Surf. Coat. Technol. 112, 261–266 (1999). [CrossRef]
  20. D. Rademacher, B. Fritz, and M. Vergöhl, “Origin of particles during reactive sputtering of oxides using planar and cylindrical magnetrons,” Appl. Opt. 51, 927–935 (2012). [CrossRef]
  21. A. Schintlmeister and P. Wilhartitz, “Optical coatings (Nb2O5, Ta2O5 and WO3) for LAC-applications obtained by DC quasireactive magnetron sputtering of ceramic sputtering targets,” in Proceedings of Society of Vacuum Coaters—46th Annual Technical Conference Proceedings (2003), pp. 296–301.
  22. M. Sernyi, T. Lohner, P. Petrik, Z. Zolnai, Z. E. Horvth, and N. Q. Khnh, “Characterization of sputtered and annealed niobium oxide films using spectroscopic ellipsometry, Rutherford backscattering spectrometry and x-ray diffraction,” Thin Solid Films 516, 8096–8100 (2008). [CrossRef]
  23. T. Babeva, E. Atanassova, and J. Koprinarova, “Optical characteristics of thin rf sputtered Ta2O5 layers,” Phys. Status Solidi B 202, 330–336 (2005). [CrossRef]
  24. F. Rubio, J. Denis, J. M. Albella, and J. M. Martinez-Duart, “Reactive sputtered Ta2O5 antireflection coatings,” Solar Cells 8, 263–268 (1983). [CrossRef]
  25. V. Pervak, F. Krausz, and A. Apolonski, “Hafnium oxide thin films deposited by reactive middle-frequency dual-magnetron sputtering,” Thin Solid Films 515, 7984–7989 (2007). [CrossRef]
  26. W. T. Pawlewicz, D. D. Hays, and P. M. Martin, “High band gap oxide optical coatings for 0.25 and 1.06 μm fusion lasers,” Thin Solid Films 73, 169–175 (1980). [CrossRef]
  27. A. Belkind, A. Freilicha, G. Song, Z. Zhao, R. Scholl, and E. Bixon, “Mid-frequency reactive sputtering of dielectrics: Al2O3,” Surf. Coat. Technol. 174–175, 88–93 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited