OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 34 — Dec. 1, 2012
  • pp: 8132–8140

Analysis of multiwavelength coherent beam combining effect

Han Kai, Xu Xiaojun, and Liu Zejin  »View Author Affiliations

Applied Optics, Vol. 51, Issue 34, pp. 8132-8140 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (971 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The combination effect of multiwavelength active coherent beam combination (CBC) is investigated theoretically. The dependence of the combination effect on the optical path control precision, spectral width, wavelength number, and channel number is revealed. In the case of small optical path variance, the combination effect approximately decreases in quadratic form with wavelength number N, spectral width Δν, and optical path variance σ increasing. In the case of large optical path variance, the combination effect is independent of the optical path variance and the spectral width. The larger the wavelength number is, the smaller the Strehl ratio expectation is, and it finally degenerates to the incoherent combination. The necessity of optical path control is discussed. This study is helpful for multiwavelength CBC system design and the combination effect estimation.

© 2012 Optical Society of America

OCIS Codes
(060.2630) Fiber optics and optical communications : Frequency modulation
(140.3298) Lasers and laser optics : Laser beam combining
(060.3510) Fiber optics and optical communications : Lasers, fiber

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: September 21, 2012
Manuscript Accepted: October 5, 2012
Published: November 28, 2012

Han Kai, Xu Xiaojun, and Liu Zejin, "Analysis of multiwavelength coherent beam combining effect," Appl. Opt. 51, 8132-8140 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. J. Augst, T. Y. Fan, and A. Sanchez, “Coherent beam combining and phase noise measurements of ytterbium fiber amplifiers,” Opt. Lett. 29, 474–476 (2004). [CrossRef]
  2. T. Y. Fan, “Laser beam combining for high-power, high radiance sources,” IEEE J. Sel. Top. Quantum Electron. 11, 567–577 (2005). [CrossRef]
  3. S. J. Augst, J. K. Ranka, T. Y. Fan, and A. Sanchez, “Beam combining of ytterbium fiber amplifiers,” J. Opt. Soc. Am. B 24, 1707–1713 (2007). [CrossRef]
  4. M. Wickham, J. Anderegg, S. Brosnan, E. Cheung, P. Epp, D. Hammons, H. Komine, and M. Weber, “Coherently coupled high power fiber arrays,” Proc. SPIE 6102, 61020U (2006). [CrossRef]
  5. T. M. Shay, J. T. Baker, A. D. Sanchez, C. A. Robin, C. L. Vergien, C. Zerinque, A. D. Sanchez, D. Gallant, C. A. Lu, B. Pulford, C. T. J. Bronder, and A. Lucero, “High power phase locking of a fiber amplifier array,” Proc. SPIE 7195, 71951M (2009). [CrossRef]
  6. S. J. McNaught, J. E. Rothenberg, P. A. Thielen, M. G. Wickham, M. E. Weber, and G. D. Goodno, “Coherent combining of a 1.26 kW fiber amplifier,” presented at Advanced Solid-State Photonics, San Diego, CA, February 3, 2010paper AMA2.
  7. G. D. Goodno, S. J. McNaught, J. E. Rothenberg, T. S. McComb, P. A. Thielen, M. G. Wickham, and M. E. Weber, “Active phase and polarization locking of a 1.4 kW fiber amplifier,” Opt. Lett. 35, 1542–1544 (2010). [CrossRef]
  8. Y. Ma, X. Wang, J. Leng, H. Xiao, X. Dong, J. Zhu, W. Du, P. Zhou, X. Xu, L. Si, Z. Liu, and Y. Zhao, “Coherent beam combination of 1.08 kW fiber amplifier array using single frequency dithering technique,” Opt. Lett. 36, 951–953 (2011). [CrossRef]
  9. X. Wang, P. Zhou, Y. Ma, J. Leng, X. Xu, and Z. Liu, “Active phasing a nine-element 1.14 kW all-fiber two-tone MOPA array using SPGD algorithm,” Opt. Lett. 36, 3121–3123 (2011). [CrossRef]
  10. C. X. Yu, S. J. Augst, S. M. Redmond, K. C. Goldizen, D. V. Murphy, A. Sanchez, and T. Y. Fan, “Coherent combining of a 4 kW, eight-element fiber amplifier array,” Opt. Lett. 36, 2686–2688 (2011). [CrossRef]
  11. A. Flores, T. M. Shay, C. A. Lu, C. Robin, B. Pulford, A. D. Sanchez, D. W. Hult, and K. B. Rowland, “Coherent beam combining of fiber amplifiers in a kW regime,” paper presented at Conference on Lasers and Electro-Optics, Kirtland Air Force Base, NM, May 1–6, 2011.
  12. S. K. Korotky and T. River, “Multifrequency lightwave source using phase modulation for suppressing stimulated Brillouin scattering in optical fibers,” U. S. Patent 5,566,381 (15October1996).
  13. X. Wang, P. Zhou, J. Leng, W. Du, Y. Ma, H. Xiao, J. Zhu, X. Dong, X. Xu, Z. Liu, and Y. Zhao, “A 275 W multitone driven all-fiber amplifier seeded by a phase-modulated single-frequency laser for coherent beam combining,” IEEE Photon. Technol. Lett. 23, 980–982 (2011). [CrossRef]
  14. J. G. Burnett and J. D. C. Jones, “Cutting optical fibers to equal lengths for broadband stellar interferometry,” Appl. Opt. 31, 2977–2978 (1992). [CrossRef]
  15. M. R. Spiegel, J. Schiller, and R. A. Srinivasan, Outline of Theory and Problems of Probability and Statistics (McGraw-Hill, 2000).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited