OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 35 — Dec. 10, 2012
  • pp: 8315–8323

Polydimethylsiloxane coating on an ionic polymer metallic composite for a tunable focusing mirror

Shih-An Tsai, Hsiang-Chun Wei, and Guo-Dung J. Su  »View Author Affiliations


Applied Optics, Vol. 51, Issue 35, pp. 8315-8323 (2012)
http://dx.doi.org/10.1364/AO.51.008315


View Full Text Article

Enhanced HTML    Acrobat PDF (1166 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An ionic polymer metallic composite (IPMC) can perform a bending deformation under an electric field by a small bias voltage. A roughening process is necessary and typically included in the IPMC fabrication. Roughening processes bring several advantages, including better metal adhesion and actuation performance. However, the resulting large surface roughness is an obstacle for optical applications. In this paper, we coated polydimethylsiloxane to improve the surface roughness of IPMC. The improved surface roughness is around 28 nm versus tens of micrometers with an uncoated IPMC. The surface-improved IPMC achieved focusing power of 77 diopters under a 7 V bias voltage. We also found that the lifetime in atmosphere is 30 times longer than that of the nonimproved IPMC. Compared with other popular focusing techniques, such as liquid lenses or micromachined deformable mirrors, the driving voltage is at least one order of magnitude lower and the tunable range is two to three times larger. The effects of the surface-improved fabrication on reflectance, surface scattering, and actuation performance are also discussed. We demonstrate the surface-improved method to construct a patterned IPMC deformable membrane for optical applications.

© 2012 Optical Society of America

OCIS Codes
(230.4040) Optical devices : Mirrors
(110.1080) Imaging systems : Active or adaptive optics
(220.1080) Optical design and fabrication : Active or adaptive optics

ToC Category:
Optical Devices

History
Original Manuscript: September 5, 2012
Revised Manuscript: October 25, 2012
Manuscript Accepted: October 25, 2012
Published: December 4, 2012

Citation
Shih-An Tsai, Hsiang-Chun Wei, and Guo-Dung J. Su, "Polydimethylsiloxane coating on an ionic polymer metallic composite for a tunable focusing mirror," Appl. Opt. 51, 8315-8323 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-35-8315

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited