OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 35 — Dec. 10, 2012
  • pp: 8413–8422

Measurement of change in refractive index in polymeric flexible substrates using wide field interferometry and digital fringe analysis

Gyanendra Singh and Dalip Singh Mehta  »View Author Affiliations

Applied Optics, Vol. 51, Issue 35, pp. 8413-8422 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1237 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Indium tin oxide coated polyethylene terephthalate (PET) polymeric films are widely used as substrates for future optoelectronic devices, such as organic LEDs, organic thin film transistors, and organic solar cells. These PET substrates are thin, flexible, and rugged. But residual stresses are trapped in polymeric substrates due to their manufacturing process, and this leads to the birefringence in flexible displays. In this paper we report the measurement of the change in refractive index of PET substrates using Mach–Zehnder interferometry and the Fourier transform fringe analysis technique. Change in refractive index was observed by means of bending the PET substrate. This change in birefringence varies the optical path difference between the two arms of the interferometer, leading to the fringe shift. From the fringe shift the phase change was extracted as a function of bending, and the change in the refractive index was determined experimentally for two wavelengths, i.e., red and green color lasers. We found that the value of change in the refractive index of these substrates increases on bending of the substrates.

© 2012 Optical Society of America

OCIS Codes
(120.2650) Instrumentation, measurement, and metrology : Fringe analysis
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.5050) Instrumentation, measurement, and metrology : Phase measurement

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: July 17, 2012
Revised Manuscript: October 15, 2012
Manuscript Accepted: November 2, 2012
Published: December 7, 2012

Gyanendra Singh and Dalip Singh Mehta, "Measurement of change in refractive index in polymeric flexible substrates using wide field interferometry and digital fringe analysis," Appl. Opt. 51, 8413-8422 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. R. Cairns and G. P. Crawford, “Electromechanical properties of transparent conducting substrates for flexible electronic displays,” Proc. IEEE 93, 1451–1458 (2005). [CrossRef]
  2. T. J. Gardner and R. P. Wenz, “STN alignment on rib-spaced plastic LCD substrate,” in Society for Information Display 1995 Digest of Technical Papers (Society for Information Display, 1995), Vol. 16, pp. 695–698.
  3. J. L. West, V. H. Bodnar, Y. Kim, and H. Wonderly, “Multi-color, cholesteric displays using plastic substrates,” in Proceedings of the Sixth International Display Workshops (Society for Information Display, 1999), pp. 335–338.
  4. C. D. Sheraw, L. Zhou, J. R. Huang, D. J. Gundlack, T. N. Jackson, M. G. Kane, I. G. Hill, M. S. Hammond, J. Campi, B. K. Greening, J. Francl, and J. W. West, “Organic thin-film transistor-driven polymer dispersed liquid crystals,” Appl. Phys. Lett. 80, 1088–1090 (2002). [CrossRef]
  5. A. N. Krasnov, “High-contrast organic light-emitting diodes on flexible substrates,” Appl. Phys. Lett. 80, 3853–3855 (2002). [CrossRef]
  6. A. B. Chwang, M. A. Rothman, S. Y. Mao, R. H. Hewitt, M. S. Weaver, J. A. Silvernail, K. Rajan, M. Hack, J. J. Brown, X. Chu, L. Moro, T. Krajewski, and N. Rutherford, “Thin film encapsulated flexible organic electroluminescent displays,” Appl. Phys. Lett. 83, 413–415 (2003). [CrossRef]
  7. O. J. Lee and K.-H. Lee, “Fabrication of flexible field emitter arrays of carbon nanotubes using self-assembly monolayers,” Appl. Phys. Lett. 82, 3770–3772 (2003). [CrossRef]
  8. T. Aernouts, P. Vanlaeke, W. Geens, J. Poortmans, P. Heremans, S. Borghs, R. Mertens, R. Andriessen, and L. Leenders, “Printable anodes for flexible organic solar cell modules,” Thin Solid Films 451, 22–25 (2004). [CrossRef]
  9. C. A. Wedding, J. W. Guy, O. M. Strbik, D. K. Wedding, R. P. Wenzlaff, and W. W. Olsen, “Flexible AC plasma displays using plasma spheres,” in Society for Information Display Digest of Technical Papers Vol. 35 (Society for Information Display, 2004), pp. 815–818.
  10. M. Stchakovsky, C. Caillaud, M. Foldyna, R. Ossikovski, and E. G. Caurel, “Polarimetric characterization of optically anisotropic flexible substrates,” Thin Solid Films 516, 1414–1418 (2008). [CrossRef]
  11. K. Noda, H. Sato, H. Itaya, and M. Yamada, “Characterization of Sn-doped In2O3 film on roll-to-roll flexible plastic substrate prepared by DC magnetron sputtering,” Jpn. J. Appl. Phys. 42, 217–222 (2003). [CrossRef]
  12. H. M. Kim, S. K. Jeung, J. S. Ahn, Y. J. Kang, and C. K. Je, “Electrical and optical properties of In2O3–ZnO films deposited on polyethylene terephthalate substrates by radio frequency magnetron sputtering,” Jpn. J. Appl. Phys. 42, 223–227 (2003). [CrossRef]
  13. M. F. Weber, C. A. Stover, L. R. Gilbert, T. J. Nevitt, and A. J. Ouderkirk, “Giant birefringent optics in multilayer polymer mirrors,” Science 287, 2451–2456 (2000). [CrossRef]
  14. R. Russo, “An alternative method for the determination of the birefringence in stretched polymeric films,” Polym. Testing 20, 283–286 (2001). [CrossRef]
  15. A. M. Title, “Improvement of birefringent filters. 2: achromatic waveplates,” Appl. Opt. 14, 229–237 (1975). [CrossRef]
  16. H. Fu, Z. Yan, and M. Mansuripur, “Measurement of the wavelength dependence of birefringence for optical disk substrates,” Appl. Opt. 33, 7406–7411 (1994). [CrossRef]
  17. H. Daly, K. Nguyen, B. Sanschagrin, and K. Cole, “The build-up and measurement of molecular orientation, crystalline morphology, and residual stresses in injection molded parts: a review,” J. Injection Molding Technol. 2, 59–85 (1998). [CrossRef]
  18. B. L. Van Horn and H. H. Winter, “Conoscopic measurement of birefringence and orientation in biaxially stretched polymer films and sheets,” Macromolecules 36, 8513–8521 (2003). [CrossRef]
  19. M. Medhat, N. I. Hendawy, and A. A. Zaki, “Fringes of equal tangential inclination by curvature-induced birefringence,” Opt. Laser Technol. 35, 31–35 (2003). [CrossRef]
  20. T. A. El-Dessouki, N. I. Hendawy, and A. A. Zaki, “Measuring birefringence of curved sheet and single crystals by double-exposure speckle photography,” Opt. Lasers Eng. 47, 622–628 (2009). [CrossRef]
  21. H. M. Shabana and A. A. Jaleel, “Optical properties of highly birefringent polymer films using simple techniques,” Int. J. Polym. Mater. 54, 1009–1018 (2005). [CrossRef]
  22. M. Takeda, “Spatial-carrier fringe-pattern analysis and its applications to precision interferometry and profilometry: an overview,” Ind. Metrol. 1, 79–99 (1990). [CrossRef]
  23. M. Suematsu, and M. Takeda, “Wavelength-shift interferometry for distance measurements using the Fourier transform technique for fringe analysis,” Appl. Opt. 30, 4046–4055(1991). [CrossRef]
  24. H.-C. Chen, K.-T. Huang, and Y.-M. Lo, “Measurement of residual stress for ITO/PET substrates by the double beam shadow moiré interferometer,” Appl. Opt. 51, 1566–1571 (2012). [CrossRef]
  25. G. P. Crawford, Flexible Flat Panel Displays (Wiley, 2005).
  26. M. J. Escuti, D. R. Cairns, and G. P. Crawford, “Optical-strain characteristics of anisotropic polymer films fabricated from a liquid crystal diacrylate,” J. Appl. Phys. 95, 2386–2390 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited