OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 35 — Dec. 10, 2012
  • pp: 8440–8448

Low-cost, broadly tunable (375–433 nm & 746–887 nm) Cr:LiCAF laser pumped by one single-spatial-mode diode

Umit Demirbas, Reinhard Uecker, Detlef Klimm, and Jing Wang  »View Author Affiliations

Applied Optics, Vol. 51, Issue 35, pp. 8440-8448 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (670 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We describe a low-cost, compact, and efficient Cr3+:LiCaAlF6 (Cr:LiCAF) laser that is broadly tunable in the near infrared (746–887 nm) and blue/ultraviolet (375–433 nm) regions of the optical spectrum. The pump source is a 660 nm single-mode-diode with 145 mW of output power. A melt-grown Cr:LiCAF crystal with an extremely high figure of merit above 2000 was used as the gain medium. This enabled the construction of a high-Q-cavity with continuous wave (cw) lasing thresholds as low as 3 mW, slope efficiencies as high as 54%, and output powers up to 63 mW. The stored intracavity power levels were above 30 W. By placing a beta-barium-borate crystal at a second intracavity focus, we could obtain tunable cw blue/ultraviolet radiation with output powers up to 3.5 mW around 400 nm. When mode-locked using a saturable Bragg reflector around 800 nm, the Cr:LiCAF laser produced 95 fs pulses with average powers of 33 mW and peak powers of 3.58 kW at a repetition rate of 85.5 MHz. Extracavity second harmonic generation enables generation of femtosecond pulses around 400 nm. These results demonstrate the possibility to grow Cr:LiCAF crystals with passive losses below 0.15% per cm, which enables construction of low-cost and complexity systems that are pumped only with one low-power single-mode-diode.

© 2012 Optical Society of America

OCIS Codes
(140.3480) Lasers and laser optics : Lasers, diode-pumped
(140.3600) Lasers and laser optics : Lasers, tunable
(140.3610) Lasers and laser optics : Lasers, ultraviolet
(140.7300) Lasers and laser optics : Visible lasers
(140.3515) Lasers and laser optics : Lasers, frequency doubled

ToC Category:
Lasers and Laser Optics

Original Manuscript: July 9, 2012
Revised Manuscript: October 30, 2012
Manuscript Accepted: November 6, 2012
Published: December 7, 2012

Umit Demirbas, Reinhard Uecker, Detlef Klimm, and Jing Wang, "Low-cost, broadly tunable (375–433 nm & 746–887 nm) Cr:LiCAF laser pumped by one single-spatial-mode diode," Appl. Opt. 51, 8440-8448 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Paschotta, Encyclopedia of Laser Physics and Technology (Wiley, 2008).
  2. S. Nakamura, M. Senoh, S.-i. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, and Y. Sugimoto, “InGaN-based multi-quantum-well-structure laser diodes,” Jpn. J. Appl. Phys. 35, L74–L76 (1996). [CrossRef]
  3. A. Khan, K. Balakrishnan, and T. Katona, “Ultraviolet light-emitting diodes based on group three nitrides,” Nat. Photonics 2, 77–84 (2008). [CrossRef]
  4. R. Paschotta, N. Moore, W. A. Clarkson, A. C. Tropper, D. C. Hanna, and G. Maze, “230 mW of blue light from a thulium-doped upconversion fiber laser,” IEEE J. Sel. Topics Quantum Electron. 3, 1100–1102 (1997). [CrossRef]
  5. A. J. S. McGonigle, D. W. Coutts, and C. E. Webb, “530 mW 7 kHz cerium LiCAF laser pumped by the sum-frequency-mixed output of a copper-vapor laser,” Opt. Lett. 24, 232–234 (1999). [CrossRef]
  6. A. J. S. McGonigle, S. Girard, D. W. Coutts, and R. Moncorgé, “10 kHz continuously tunable Ce:LiLuF laser,” Electron. Lett. 35, 1640–1641 (1999). [CrossRef]
  7. J. F. Pinto, L. Esterowitz, and G. J. Quarles, “High performance Ce :LiSrAlF/LiCaAlF lasers with extended tunability,” Electron. Lett. 31, 2009–2010 (1995). [CrossRef]
  8. Z. Quan, Y. Yi, L. Bin, Q. Dapeng, and Z. Ling, “13.2 W laser-diode-pumped Nd:YVO4/LBO blue laser at 457 nm,” J. Opt. Soc. Am. B 26, 1238–1242 (2009). [CrossRef]
  9. S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and H. W. Newkirk, “Laser performance of LiSAIF6:Cr3+,” J. Appl. Phys. 66, 1051–1056 (1989). [CrossRef]
  10. S. A. Payne, L. L. Chase, H. W. Newkirk, L. K. Smith, and W. F. Krupke, “LiCaAlF6:Cr3+ a promising new solid-state laser material,” IEEE J. Quantum Electron. 24, 2243–2252 (1988). [CrossRef]
  11. L. K. Smith, S. A. Payne, W. L. Kway, L. L. Chase, and B. H. T. Chai, “Investigation of the laser properties of Cr3+:LiSrGaF6,” IEEE J. Quantum Electron. 28, 2612–2618 (1992). [CrossRef]
  12. B. H. T. Chai, J.-L. Lefaucheur, M. Stalder, and M. Bass, “Cr:LiSr0.8Ca0.2AlF6 tunable laser,” Opt. Lett. 17, 1584–1586(1992). [CrossRef]
  13. L. K. Smith, S. A. Payne, W. F. Krupke, L. D. DeLoach, R. Morris, E. W. O’Dell, and D. J. Nelson, “Laser emission from the transition-metal compound LiSrCrF6,” Opt. Lett. 18, 200–202 (1993). [CrossRef]
  14. R. Scheps, J. F. Myers, H. B. Serreze, A. Rosenberg, R. C. Morris, and M. Long, “Diode-pumped Cr:LiSrAlF6 laser,” Opt. Lett. 16, 820–822 (1991). [CrossRef]
  15. G. J. Valentine, J. M. Hopkins, P. Loza-Alvarez, G. T. Kennedy, W. Sibbett, D. Burns, and A. Valster, “Ultralow-pump-threshold, femtosecond Cr3+:LiSrAlF6 laser pumped by a single narrow-stripe AlGaInP laser diode,” Opt. Lett. 22, 1639–1641 (1997). [CrossRef]
  16. J. F. Pinto, L. Esterowitz, and G. H. Rosenblatt, “Frequency tripling of a Q-switched Cr:LiSAF laser to the UV region,” IEEE J. Sel. Topics Quantum Electron. 1, 58–61 (1995). [CrossRef]
  17. U. Demirbas, D. Li, J. R. Birge, A. Sennaroglu, G. S. Petrich, L. A. Kolodziejski, F. X. Kartner, and J. G. Fujimoto, “Low-cost, single-mode diode-pumped Cr:Colquiriite lasers,” Opt. Express 17, 14374–14388 (2009). [CrossRef]
  18. U. Demirbas, S. Eggert, and A. Leitenstorfer, “Compact and efficient Cr:LiSAF lasers pumped by one single-spatial-mode diode: a minimal cost approach,” J. Opt. Soc. Am. B 29, 1894–1903 (2012). [CrossRef]
  19. I. T. Sorokina, E. Sorokin, E. Wintner, A. Cassanho, H. P. Jenssen, and R. Szipocs, “14 fs pulse generation in Kerr-lens mode-locked prismless Cr:LiSGaF and Cr:LiSAF lasers: observation of pulse self-frequency shift,” Opt. Lett. 22, 1716–1718 (1997). [CrossRef]
  20. S. Uemura and K. Torizuka, “Generation of 10 fs pulses from a diode-pumped Kerr-lens mode-locked Cr : LiSAF laser,” Jpn. J. Appl. Phys. 39, 3472–3473 (2000). [CrossRef]
  21. P. Wagenblast, U. Morgner, F. Grawert, V. Scheuer, G. Angelow, M. J. Lederer, and F. X. Kärtner, “Generation of sub-10 fs pulses from a Kerr-lens modelocked Cr3+:LiCAF laser oscillator using third order dispersion compensating double chirped mirrors,” Opt. Lett. 27, 1726–1729 (2002). [CrossRef]
  22. E. Sorokin, “Solid-state materials for few-cycle pulse generation and amplification,” in Few-Cycle Laser Pulse Generation and its Applications, F. X. Kärtner, ed. (Springer-Verlag, 2004), pp. 3–71.
  23. F. Druon, F. Balembois, and P. Georges, “New laser crystals for the generation of ultrashort pulses,” C. R. Physique 8, 153–164 (2007). [CrossRef]
  24. J. M. Hopkins, G. J. Valentine, B. Agate, A. J. Kemp, U. Keller, and W. Sibbett, “Highly compact and efficient femtosecond Cr:LiSAF lasers,” IEEE J. Quantum Electron. 38, 360–368 (2002). [CrossRef]
  25. P. Laperle, K. J. Snell, A. Chandonnet, P. Galarneau, and R. Vallée, “Tunable diode-pumped and frequency-doubled Cr:LiSAF lasers,” Appl. Opt. 36, 5053–5057 (1997). [CrossRef]
  26. F. Falcoz, F. Balembois, P. Georges, A. Brun, and D. Rytz, “All-solid-state continuous-wave tunable blue-light source by intracavity doubling of a diode-pumped Cr:LiSAF laser,” Opt. Lett. 20, 1274–1276 (1995). [CrossRef]
  27. J. M. Eichenholz, M. Richardson, and G. Mizell, “Diode pumped, frequency doubled LiSAF microlaser,” Opt. Commun. 153, 263–266 (1998).
  28. S. Makio, H. Matsumoto, A. Miyamoto, M. Sato, and T. Sasaki, “Low-noise blue light generation of intracavity frequency-doubled LD-pumped Cr:LiSAF laser by single-mode method,” Electr. Eng. Jpn. 120-C, 910–915 (2002).
  29. F. Balembois, P. Georges, F. Georges, G. Roger, and A. Brun, “Tunable blue light source by intracavity frequency doubling of a Cr-doped LiSrAlF6 laser,” Appl. Phys. Lett. 61, 2381–2382 (1992). [CrossRef]
  30. C.-S. Chen, Y.-S. Zhang, J.-W. Yu, J. Fang, and S.-H. Liu, “Experimental study on dual wavelength and dual pulse Q-switched frequency doubling on a tunable Cr:LiSAF laser,” Chin. Phys. Lett. 26, 0942061 (2009). [CrossRef]
  31. B. Agate, E. U. Rafailov, W. Sibbett, S. M. Saltiel, P. Battle, T. Fry, and E. Noonan, “Highly efficient blue-light generation from a compact, diode-pumped femtosecond laser by use of a periodically poled KTP waveguide crystal,” Opt. Lett. 28, 1963–1965 (2003). [CrossRef]
  32. B. Agate, E. U. Rafailov, W. Sibbett, S. M. Saltiel, K. Koynov, M. Tiihonen, S. H. Wang, F. Laurell, P. Battle, T. Fry, T. Roberts, and E. Noonan, “Portable ultrafast blue light sources designed with frequency doubling in KTP and KNbO3,” IEEE J. Sel. Topics Quantum Electron. 10, 1268–1276 (2004). [CrossRef]
  33. B. Agate, A. J. Kemp, C. T. A. Brown, and W. Sibbett, “Efficient, high repetition-rate femtosecond blue source using a compact Cr:LiSAF laser,” Opt. Express 10, 824–831 (2002). [CrossRef]
  34. J. J. Deyoreo, L. J. Atherton, and D. H. Roberts, “Elimination of scattering centers from Cr-LiCaAlF6,” J. Cryst. Growth 113, 691–697 (1991). [CrossRef]
  35. G. Lacayo, I. Hahnert, D. Klimm, P. Reiche, and W. Neumann, “Transmission electron microscope study of secondary phases in Cr3+: LiCaAlF6 single crystals,” Cryst. Res. Technol. 34, 1221–1227 (1999). [CrossRef]
  36. D. Klimm and P. Reiche, “Ternary colquiriite type fluorides as laser hosts,” Cryst. Res. Technol. 34, 145–152 (1999). [CrossRef]
  37. D. Klimm, R. Uecker, and P. Reiche, “Melting behavior and growth of colquiriite laser crystals,” Cryst. Res. Technol. 40, 352–358 (2005). [CrossRef]
  38. D. Klimm, G. Lacayo, and P. Reiche, “Growth of Cr : LiCaAlF6 and Cr : LiSrAlF6 by the Czochralski method,” J. Cryst. Growth 210, 683–693 (2000). [CrossRef]
  39. D. Kopf, K. J. Weingarten, G. Zhang, M. Moser, M. A. Emanuel, R. J. Beach, J. A. Skidmore, and U. Keller, “High-average-power diode-pumped femtosecond Cr:LiSAF lasers,” Appl. Phys. B 65, 235–243 (1997). [CrossRef]
  40. M. Stalder, M. Bass, and B. H. T. Chai, “Thermal quenching of fluoresence in chromium-doped fluoride laser crystals,” J. Opt. Soc. Am. B 9, 2271–2273 (1992). [CrossRef]
  41. J. M. Eichenholz and M. Richardson, “Measurement of thermal lensing in Cr3+-doped colquiriites,” IEEE J. Quantum Electron. 34, 910–919 (1998). [CrossRef]
  42. J. K. Jabczynski, W. Zendzian, Z. Mierczyk, and Z. Frukacz, “Chromium-doped LiCAF laser passively Q switched with a V3+:YAG crystal,” Appl. Opt. 40, 6638–6645 (2001). [CrossRef]
  43. A. Agnesi, F. Pirzio, and G. Reali, “Low-threshold femtosecond Nd:glass laser,” Opt. Express 17, 9171–9176 (2009). [CrossRef]
  44. D. Findlay and R. A. Clay, “The measurement of internal losses in 4-level lasers,” Phys. Lett. 20, 277–278 (1966). [CrossRef]
  45. J. A. Caird, L. G. DeShazer, and J. Nella, “Characteristics of room-temperature 2.3 μm laser emission from Tm3+ in YAG and YAlO3,” IEEE J. Quantum Electron. 11, 874–881 (1975). [CrossRef]
  46. U. Demirbas, A. Sennaroglu, F. X. Kärtner, and J. G. Fujimoto, “Comparative investigation of diode pumping for continuous-wave and mode-locked Cr3+:LiCAF lasers,” J. Opt. Soc. Am. B 26, 64–79 (2009). [CrossRef]
  47. A. Isemann and C. Fallnich, “High-power colquiriite laser with high slope efficiencies pumped by broad-area laser diodes,” Opt. Express 11, 259–264 (2003). [CrossRef]
  48. P. W. Roth, A. J. Maclean, D. Burns, and A. J. Kemp, “Directly diode-laser-pumped Ti:sapphire laser,” Opt. Lett. 34, 3334–3336 (2009). [CrossRef]
  49. D. Li, U. Demirbas, A. Benedick, A. Sennaroglu, J. G. Fujimoto, and F. X. Kärtner, “Attosecond timing jitter pulse trains from semiconductor saturable absorber mode-locked Cr:LiSAF lasers,” Opt. Express 20, 23422–23435 (2012). [CrossRef]
  50. P. Beaud, M. C. Richardson, Y. F. Chen, and B. H. T. Chai, “Optical amplification characteristics of Cr-LiSAF and Cr-LiCAF under flashlamp-pumping,” IEEE J. Quantum Electron. 30, 1259–1266 (1994). [CrossRef]
  51. S. Tsuda, W. H. Knox, S. T. Cundiff, W. Y. Jan, and J. E. Cunningham, “Mode-locking ultrafast solid-state lasers with saturable Bragg reflectors,” IEEE J. Sel. Topics Quantum Electron. 2, 454–464 (1996). [CrossRef]
  52. U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. A. derAu, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Topics Quantum Electron. 2, 435–453 (1996). [CrossRef]
  53. C. Hönninger, R. Paschotta, F. Morier-Genoud, M. Moser, and U. Keller, “Q-switching stability limits of continuous-wave passive mode locking,” J. Opt. Soc. Am. 16, 46–56 (1999). [CrossRef]
  54. F. X. Kärtner, L. R. Brovelli, D. Kopf, M. Kamp, I. Calasso, and U. Keller, “Control of solid-state laser dynamics by semiconductor devices,” Opt. Eng. 34, 2024–2036 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited