OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 36 — Dec. 20, 2012
  • pp: 8677–8686

Computational manufacturing as a tool for the selection of the most manufacturable design

Tatiana V. Amotchkina, Sebastian Schlichting, Henrik Ehlers, Michael K. Trubetskov, Alexander V. Tikhonravov, and Detlev Ristau  »View Author Affiliations


Applied Optics, Vol. 51, Issue 36, pp. 8677-8686 (2012)
http://dx.doi.org/10.1364/AO.51.008677


View Full Text Article

Enhanced HTML    Acrobat PDF (1748 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Applications of computational manufacturing experiments (CMEs) for selection of the most manufacturable designs among a variety of different design solutions are demonstrated. We compare design solutions with respect to estimations of their production yields. Computational experiments are performed using two simulation software tools. In the course of CMEs, we take into account all major factors causing errors in our deposition process. Real deposition experiments are in agreement with CMEs; the most manufacturable design exhibits better target performances compared to other designs.

© 2012 Optical Society of America

OCIS Codes
(310.1860) Thin films : Deposition and fabrication
(310.3840) Thin films : Materials and process characterization
(310.6860) Thin films : Thin films, optical properties
(310.4165) Thin films : Multilayer design

ToC Category:
Thin Films

History
Original Manuscript: October 4, 2012
Revised Manuscript: November 21, 2012
Manuscript Accepted: November 21, 2012
Published: December 17, 2012

Citation
Tatiana V. Amotchkina, Sebastian Schlichting, Henrik Ehlers, Michael K. Trubetskov, Alexander V. Tikhonravov, and Detlev Ristau, "Computational manufacturing as a tool for the selection of the most manufacturable design," Appl. Opt. 51, 8677-8686 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-36-8677


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Kruschwitz, “Software tools speed optical thin-film design,” Laser Focus World 39, 157–166 (2003).
  2. A. V. Tikhonravov, M. K. Trubetskov, and G. W. DeBell, “Application of the needle optimization technique to the design of optical coatings,” Appl. Opt. 35, 5493–5508 (1996). [CrossRef]
  3. A. V. Tikhonravov, M. K. Trubetskov, and G. W. DeBell, “Optical coating design approaches based on the needle optimization technique,” Appl. Opt. 46, 704–710 (2007). [CrossRef]
  4. V. Pervak, M. K. Trubetskov, and A. V. Tikhonravov, “Robust synthesis of dispersive mirrors,” Opt. Express 19, 2371–2380 (2011). [CrossRef]
  5. A. V. Tikhonravov and M. K. Trubetskov, “Modern design tools and a new paradigm in optical coating design,” Appl. Opt. 51, 7319–7332 (2012). [CrossRef]
  6. A. V. Tikhonravov, M. K. Trubetskov, T. V. Amotchkina, and M. A. Kokarev, “Key role of the coating total optical thickness in solving design problems,” Proc. SPIE 5250, 312–321 (2004). [CrossRef]
  7. A. Tikhonravov, M. Trubetskov, and I. Kasahara, “Achievements and challenges in the design and production of high quality optical coatings,” IEICE Trans. Electron. E91-C, 1622–1629 (2008). [CrossRef]
  8. A. V. Tikhonravov and M. K. Trubetskov, “Design opportunities for better manufacturability,” in Optical Interference Coatings, Technical Digest (CD) (Optical Society of America, 2011), p. WA2.
  9. A. V. Tikhonravov and M. K. Trubetskov, “Modern status and prospects of the development of methods of designing multilayer optical coatings,” J. Opt. Technol. 74, 845–850 (2007). [CrossRef]
  10. A. V. Tikhonravov, M. K. Trubetskov, T. V. Amotchkina, and V. Pervak, “Estimations of production yields for choosing of a practically optimal optical coating design,” Appl. Opt. 50, C141–C147 (2011). [CrossRef]
  11. T. V. Amotchkina, M. K. Trubetskov, V. Pervak, and A. V. Tikhonravov, “Design, production and reverse engineering of two-octave antireflection coatings,” Appl. Opt. 50, 6468–6475 (2011). [CrossRef]
  12. B. Badoil, F. Lemarchand, M. Cathelinaud, and M. Lequime, “Interest of broadband optical monitoring for thin-film filter manufacturing,” Appl. Opt. 46, 4294–4303 (2007). [CrossRef]
  13. B. Vidal, A. Fornier, and E. Pelletier, “Optical monitoring of nonquarterwave multilayer filters,” Appl. Opt. 17, 1038–1047 (1978). [CrossRef]
  14. A. V. Tikhonravov, M. K. Trubetskov, and T. V. Amotchkina, “Investigation of the effect of accumulation of thickness errors in optical coating production using broadband optical monitoring,” Appl. Opt. 45, 7026–7034 (2006). [CrossRef]
  15. A. V. Tikhonravov, M. K. Trubetskov, and T. V. Amotchkina, “On the reliability of computational estimations used for choosing the most manufacturable design,” in Optical Interference Coatings, Technical Digest (CD) (Optical Society of America, 2011), paper TuA3.
  16. A. V. Tikhonravov, M. K. Trubetskov, and T. V. Amotchkina, “Computational manufacturing experiments for choosing optimal design and monitoring strategy,” in Optical Interference Coatings, Technical Digest (CD) (Optical Society of America, 2011), paper TuA5.
  17. K. Friedrich, S. Wilbrandt, O. Stenzel, N. Kaiser, and K. Hoffmann, “Computational manufacturing of optical interference coatings: method, simulation results, and comparison with experiment,” Appl. Opt. 49, 3150–3162 (2010). [CrossRef]
  18. D. Ristau, H. Ehlers, S. Schlichting, and M. Lappschies, “State of art in deterministic production of optical thin films,” Proc. SPIE 7101, 71010C (2008). [CrossRef]
  19. M. Tilsch, K. Hendrix, and P. Verly, “Optical interference coating design contest 2004,” Appl. Opt. 45, 1544–1554(2006). [CrossRef]
  20. H. Ehlers, S. Schlichting, C. Schmitz, and D. Ristau, “Hybrid process control for precision optics enhanced by computational manufacturing,” in Optical Interference Coatings, Technical Digest (CD) (Optical Society of America, 2011), paper TuC6.
  21. O. Stenzel, S. Wilbrandt, and N. Kaiser, “All-oxide broadband antireflection coatings by plasma ion assisted deposition: design, simulation, manufacturing and re-optimization,” Opt. Express 18, 8704–8708 (2010). [CrossRef]
  22. A. V. Tikhonravov and M. K. Trubetskov, “Computational manufacturing as a bridge between design and production,” Appl. Opt. 44, 6877–6884 (2005). [CrossRef]
  23. A. V. Tikhonravov and M. K. Trubetskov, OptiLayer Thin Film Software, http://www.optilayer.com .
  24. D. Ristau, H. Ehlers, T. Gross, and M. Lappschies, “Optical broadband monitoring of conventional and ion processes,” Appl. Opt. 45, 1495–1501 (2006). [CrossRef]
  25. O. Stenzel, S. Wilbrandt, D. Fasold, and N. Kaiser, “A hybrid in situ monitoring strategy for optical coating deposition: application to the preparation of chirped dielectric mirrors,” J. Opt. A 10, 085305 (2008). [CrossRef]
  26. A. Zoeller, M. Boos, H. Hagedorn, and B. Romanov, “Computer simulation of coating processes with monochromatic monitoring,” Proc. SPIE 7101, 71010G (2008). [CrossRef]
  27. T. V. Amotchkina, S. Schlichting, H. Ehlers, M. K. Trubetskov, A. V. Tikhonravov, and D. Ristau, “Computational manufacturing as a key element in design-production chain for modern multilayer coatings,” Appl. Opt. 51, 7604–7615 (2012). [CrossRef]
  28. A. V. Tikhonravov, M. K. Trubetskov, and T. V. Amotchkina, “Investigation of the error self-compensation effect associated with broadband optical monitoring,” Appl. Opt. 50, C111–C116 (2011). [CrossRef]
  29. S. Furman and A. V. Tikhonravov, Basics of Optics of Multilayer Systems (Edition Frontieres, 1992).
  30. S. Wilbrandt, O. Stenzel, N. Kaiser, M. K. Trubetskov, and A. V. Tikhonravov, “In situ optical characterization and re-engineering of interference coatings,” Appl. Opt. 47, C49–C54 (2008). [CrossRef]
  31. H. Macleod, “Monitoring of optical coatings,” Appl. Opt. 20, 82–89 (1981). [CrossRef]
  32. B. T. Sullivan and J. A. Dobrowolski, “Deposition error compensation for optical multilayer coatings. I. Theoretical description,” Appl. Opt. 31, 3821–3835 (1992). [CrossRef]
  33. A. V. Tikhonravov, M. K. Trubetskov, T. V. Amotchkina, G. DeBell, V. Pervak, A. K. Sytchkova, M. L. Grilli, and D. Ristau, “Optical parameters of oxide films typically used in optical coating production,” Appl. Opt. 50, C75–C85 (2011). [CrossRef]
  34. A. V. Tikhonravov, T. V. Amotchkina, M. K. Trubetskov, R. Francis, V. Janicki, J. Sancho-Parramon, H. Zorc, and V. Pervak, “Optical characterization and reverse engineering based on multiangle spectroscopy,” Appl. Opt. 51, 245–254 (2012). [CrossRef]
  35. T. V. Amotchkina, M. K. Trubetskov, V. Pervak, S. Schlichting, H. Ehlers, D. Ristau, and A. V. Tikhonravov, “Comparison of algorithms used for optical characterization of multilayer optical coatings,” Appl. Opt. 50, 3389–3395 (2011). [CrossRef]
  36. A. V. Tikhonravov and M. K. Trubetskov, “On-line characterization and reoptimization of optical coatings,” Proc. SPIE 5250, 406–413 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited