OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 36 — Dec. 20, 2012
  • pp: 8687–8692

Laser-induced damage behaviors of antireflective coatings at cryogenic condition

He Wang, Weili Zhang, and Hongbo He  »View Author Affiliations


Applied Optics, Vol. 51, Issue 36, pp. 8687-8692 (2012)
http://dx.doi.org/10.1364/AO.51.008687


View Full Text Article

Enhanced HTML    Acrobat PDF (752 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The laser-induced damage to antireflective coatings on Yb:YAG crystals under different temperatures was investigated. An optical profiler, field-emission scanning-electron microscopy, and a step profiler were used to determine the damage morphology, including size and depth. The results show that there is about 5J/cm2 decrease in the laser-induced damage threshold of cryogenic conditions compared to that of room temperature in 1-on-1 test mode, and a 3J/cm2 decrease in 100-on-1 mode. There is an accumulation effect in both cases. Meanwhile, the damage areas and depths are also much larger under cryogenic conditions. The precipitation of the subsurface defects in the substrate and the thermal stress in the interface between the film and the substrate under cryogenic conditions are considered to be the key factors in the unique damage behaviors.

© 2012 Optical Society of America

OCIS Codes
(140.3440) Lasers and laser optics : Laser-induced breakdown
(310.1210) Thin films : Antireflection coatings

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: October 19, 2012
Revised Manuscript: November 21, 2012
Manuscript Accepted: November 26, 2012
Published: December 20, 2012

Citation
He Wang, Weili Zhang, and Hongbo He, "Laser-induced damage behaviors of antireflective coatings at cryogenic condition," Appl. Opt. 51, 8687-8692 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-36-8687


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. Brunner, R. Paschotta, J. Aus der Au, G. J. Spuhler, F. Morier-Genoud, R. Hovel, M. Moser, S. Erhard, M. Karszewski, A. Giesen, and U. Keller, “Widely tunable pulse durations from a passively mode-locked thin-disk Yb:YAG laser,” Opt. Lett. 26, 379–381 (2001). [CrossRef]
  2. J. A. der Au, G. J. Spuhler, T. Sudmeyer, R. Paschotta, R. Hovel, M. Moser, S. Erhard, M. Karszewski, A. Giesen, and U. Keller, “16.2 W average power from a diode-pumped femtosecond Yb:YAG thin disk laser,” Opt. Lett. 25, 859–861 (2000). [CrossRef]
  3. T. Y. Fan, “Optimizing the efficiency and stored energy in quasi-3-level lasers,” IEEE J. Quantum Electron. 28, 2692–2697 (1992). [CrossRef]
  4. E. C. Honea, R. J. Beach, S. C. Mitchell, J. A. Skidmore, M. A. Emanuel, S. B. Sutton, S. A. Payne, P. V. Avizonis, R. S. Monroe, and D. G. Harris, “High-power dual-rod Yb:YAG laser,” Opt. Lett. 25, 805–807 (2000). [CrossRef]
  5. C. Honninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B 69, 3–17 (1999). [CrossRef]
  6. P. Lacovara, H. K. Choi, C. A. Wang, R. L. Aggarwal, and T. Y. Fan, “Room-temperature diode-pumped Yb:YAG laser,” Opt. Lett. 16, 1089–1091 (1991). [CrossRef]
  7. J. L. Wang, Z. H. Zhang, X. J. Cheng, L. Li, X. C. Shi, X. L. Zhu, and W. B. Chen, “Study of diode-pumped Yb:YAG disk lasers at low temperature,” Chin. Opt. Lett. 9, 111403 (2011). [CrossRef]
  8. D. J. Ripin, J. R. Ochoa, R. L. Aggarwal, and T. Y. Fan, “165 W cryogenically cooled Yb:YAG laser,” Opt. Lett. 29, 2154–2156 (2004). [CrossRef]
  9. W. T. Feng and Y. X. Yan, “Shift in infrared interference filters at cryogenic temperature,” Appl. Opt. 31, 6591–6592 (1992). [CrossRef]
  10. W. T. Feng and Y. X. Yan, “Spectral performance of multilayer filers at cryogenic temperature,” Proc. SPIE 1765, 131–135 (1993). [CrossRef]
  11. W. E. Johnson, B. P. Edmonds, and M. J. Wolf, “Environmental stability of rugate filters: in-situ measurements of their spectral properties,” Proc. SPIE 3425, 85–91 (1998).
  12. J. S. Seeley, R. Hunneman, and A. Whatley, “Temperature-invariant and other narrow-band IR filters containing PbTe, 4–20 microns,” Proc. SPIE 246, 83–94 (1980).
  13. H. Takashashi, “Temperature stability of thin-film narrow-bandpass filters produced by ion-assisted deposition,” Appl. Opt. 34, 667–675 (1995). [CrossRef]
  14. J. Oulehla, and P. Pokorny, “AR coatings on laser crystals for HiPER project,” Proc. SPIE 7786, 778614i (2010).
  15. K. Mikami, S. Motokoshi, M. Fujita, T. Jitsuno, and K. A. Tanaka, “Laser-induced damage thresholds of optical coatings at different temperature,” Proc. SPIE 8190, 81900A (2011).
  16. J. Capoulade and L. Gallais, “Multiscale analysis of the laser-induced damage threshold in optical coatings,” Appl. Opt. 47, 5272–5280 (2002).
  17. J. Y. Natoli, L. Gallais, H. Akhouayri, and C. Amra, “Laser-induced damage of materials in bulk, thin-film, and liquid forms,” Appl. Opt. 41, 3156–3166 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited