OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 36 — Dec. 20, 2012
  • pp: 8779–8792

Atmospheric vertical profiles of O3, N2O, CH4, CCl2F2, and H2O retrieved from external-cavity quantum-cascade laser heterodyne radiometer measurements

Tracy R. Tsai, Rebecca A. Rose, Damien Weidmann, and Gerard Wysocki  »View Author Affiliations


Applied Optics, Vol. 51, Issue 36, pp. 8779-8792 (2012)
http://dx.doi.org/10.1364/AO.51.008779


View Full Text Article

Enhanced HTML    Acrobat PDF (1570 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Atmospheric vertical profiles of ozone, nitrous oxide, methane, dichlorodifluoromethane, and water are retrieved from data collected with a widely tunable external-cavity quantum-cascade laser heterodyne radiometer (EC-QC-LHR) covering a spectral range between 1120 and 1238cm1. The instrument was operated in solar occultation mode during a two-month measurement campaign at Rutherford Appleton Laboratory in Oxfordshire, UK, in winter 2010/2011, and ultrahigh-resolution (60 MHz or 0.002cm1) transmission spectra were recorded for multiple narrow spectral windows (1cm1 width) specific to each molecule. The ultrahigh spectral resolution of the EC-QC-LHR allows retrieving altitudinal profiles from transmission spectra that contain only few (1–3) significant absorption lines of a target molecule. Profiles are validated by comparing with European Centre for Medium-Range Weather Forecasts operational atmospheric profiles (ozone and water), with other data in the literature (nitrous oxide, methane, dichlorodifluoromethane), and with retrievals from a lower resolution (600 MHz or 0.02cm1) Fourier transform spectroscopy data that were also recorded during the measurement campaign.

© 2012 Optical Society of America

OCIS Codes
(120.0280) Instrumentation, measurement, and metrology : Remote sensing and sensors
(300.6310) Spectroscopy : Spectroscopy, heterodyne
(280.4991) Remote sensing and sensors : Passive remote sensing
(140.5965) Lasers and laser optics : Semiconductor lasers, quantum cascade

ToC Category:
Spectroscopy

History
Original Manuscript: August 17, 2012
Manuscript Accepted: November 2, 2012
Published: December 20, 2012

Citation
Tracy R. Tsai, Rebecca A. Rose, Damien Weidmann, and Gerard Wysocki, "Atmospheric vertical profiles of O3, N2O, CH4, CCl2F2, and H2O retrieved from external-cavity quantum-cascade laser heterodyne radiometer measurements," Appl. Opt. 51, 8779-8792 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-36-8779


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. T. Menzies, Laser Monitoring of the Atmosphere, E. D. Hinkley, ed. (Springer, 1976).
  2. D. Weidmann, W. J. Reburn, and K. M. Smith, “Retrieval of atmospheric ozone profiles from an infrared quantum cascade laser heterodyne radiometer: results and analysis,” Appl. Opt. 46, 7162–7171 (2007). [CrossRef]
  3. D. Weidmann, W. J. Reburn, and K. M. Smith, “Ground-based prototype quantum cascade laser heterodyne radiometer for atmospheric studies,” Rev. Sci. Instrum. 78, 073107 (2007). [CrossRef]
  4. R. T. Menzies and R. K. Seals, “Ozone monitoring with an infrared heterodyne radiometer,” Science 197, 1275–1277 (1977). [CrossRef]
  5. M. A. Frerking and D. J. Muehlner, “Infrared heterodyne spectroscopy of atmospheric ozone,” Appl. Opt. 16, 526–528 (1977). [CrossRef]
  6. M. M. Abbas, T. Kostiuk, M. J. Mumma, D. Buhl, V. G. Kunde, and L. W. Brown, “Stratospheric ozone measurement with an infrared heterodyne spectrometer,” Geophys. Res. Lett. 5, 317–320 (1978). [CrossRef]
  7. F. Allario, J. Hoell, S. Katzberg, and J. Larsen, “An experiment concept to measure stratospheric trace constituents by laser heterodyne spectroscopy,” Appl. Phys. A 23, 47–56 (1980).
  8. H. Fukunishi, S. Okano, M. Taguchi, and T. Ohnuma, “Laser heterodyne spectrometer using a liquid nitrogen cooled tunable diode laser for remote measurements of atmospheric O3 and N2O,” Appl. Opt. 29, 2722–2728 (1990). [CrossRef]
  9. W. Bell, N. A. Martin, T. D. Gardiner, N. R. Swann, P. T. Woods, P. F. Fogal, and J. W. Waters, “Column measurements of stratospheric trace species over Åre, Sweden in the winter of 1991–1992,” Geophys. Res. Lett. 21, 1347–1350 (1994). [CrossRef]
  10. D. Weidmann and G. Wysocki, “High-resolution broadband (>100  cm−1) infrared heterodyne spectro-radiometry using an external cavity quantum cascade laser,” Opt. Express 17, 248–259 (2009). [CrossRef]
  11. D. Weidmann, B. J. Perrett, N. A. Macleod, and R. M. Jenkins, “Hollow waveguide photomixing for quantum cascade laser heterodyne spectro-radiometry,” Opt. Express 19, 9074–9085(2011). [CrossRef]
  12. D. Stupar, J. Krieg, P. Krötz, G. Sonnabend, M. Sornig, T. F. Giesen, and R. Schieder, “Fully reflective external-cavity setup for quantum-cascade lasers as a local oscillator in mid-infrared wavelength heterodyne spectroscopy,” Appl. Opt. 47, 2993–2997 (2008). [CrossRef]
  13. C. Gmachl, D. L. Sivco, R. Colombelli, F. Capasso, and A. Y. Cho, “Ultra-broadband semiconductor laser,” Nature 415, 883–887 (2002). [CrossRef]
  14. A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.4 μm,” Appl. Phys. Lett. 95, 061103–061103 (2009). [CrossRef]
  15. A. Wittmann, Y. Bonetti, M. Fischer, J. Faist, S. Blaser, and E. Gini, “Distributed-feedback quantum-cascade lasers at 9 μm operating in continuous wave up to 423 K,” IEEE Photon. Technol. Lett. 21, 814–816 (2009). [CrossRef]
  16. P. L. Kinney, “The pulmonary effects of outdoor ozone and particle air pollution,” Semin. Respir. Crit. Care Med. 20, 601–607 (1999). [CrossRef]
  17. Montreal Protocol on Substances that Deplete the Ozone Layer (United Nations Environment Programme, 2009).
  18. E. Mahieu, P. Duchatelet, P. Demoulin, K. A. Walker, E. Dupuy, L. Froidevaux, C. Randall, V. Catoire, K. Strong, C. D. Boone, P. F. Bernath, J.-F. Blavier, T. Blumenstock, M. Coffey, M. De Mazière, D. Griffith, J. Hannigan, F. Hase, N. Jones, K. W. Jucks, A. Kagawa, Y. Kasai, Y. Mebarki, S. Mikuteit, R. Nassar, J. Notholt, C. P. Rinsland, C. Robert, O. Schrems, C. Senten, D. Smale, J. Taylor, C. Tétard, G. C. Toon, T. Warneke, S. W. Wood, R. Zander, and C. Servais, “Validation of ACE-FTS v2.2 measurements of HCl, HF, CCl3F and CCl2F2 using space-, balloon- and ground-based instrument observations,” Atmos. Chem. Phys. 8, 6199–6221 (2008). [CrossRef]
  19. C. P. Rinsland, C. Boone, R. Nassar, K. Walker, P. Bernath, E. Mahieu, R. Zander, J. C. McConnell, and L. Chiou, “Trends of HF, HCl, CCl2F2, CCl3F, CHClF2 (HCFC-22), and SF6 in the lower stratosphere from atmospheric chemistry experiment (ACE) and atmospheric trace molecule spectroscopy (ATMOS) measurements near 30°N latitude,” Geophys. Res. Lett. 32, L16S03 (2005). [CrossRef]
  20. T. R. Karl and K. E. Trenberth, “Modern global climate change,” Science 302, 1719–1723 (2003). [CrossRef]
  21. Kyoto Protocol to the United Nations Framework Convention on Climate Change (United Nations, 1998).
  22. J. H. Seinfeld and S. N. Pandis, Atmospheric Chemistry and Physics, 2nd ed. (John Wiley & Sons, 2006).
  23. D. R. Bates and P. B. Hays, “Atmospheric nitrous oxide,” Planet. Space Sci. 15, 189–197 (1967). [CrossRef]
  24. S. C. Wofsy, “HIAPER pole-to-pole observations (HIPPO): fine-grained, global-scale measurements of climatically important atmospheric gases and aerosols,” Phil. Trans. R. Soc. A 369, 2073–2086 (2011). [CrossRef]
  25. G. P. Brasseur, J. J. Orlando, and G. S. Tyndall, eds., Atmospheric Chemistry and Global Change, Topics in Environmental Chemistry (Oxford University, 1999).
  26. D. J. Wuebbles and K. Hayhoe, “Atmospheric methane and global change,” Earth-Sci. Rev. 57, 177–210 (2002). [CrossRef]
  27. K. Trenberth, J. Fasullo, and L. Smith, “Trends and variability in column-integrated atmospheric water vapor,” Clim. Dyn. 24, 741–758 (2005). [CrossRef]
  28. D. Weidmann, T. Tsai, N. A. Macleod, and G. Wysocki, “Atmospheric observations of multiple molecular species using ultra-high-resolution external cavity quantum cascade laser heterodyne radiometry,” Opt. Lett. 36, 1951–1953 (2011). [CrossRef]
  29. G. Wysocki, R. F. Curl, F. K. Tittel, R. Maulini, J. M. Bulliard, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade laser for high resolution spectroscopic applications,” Appl. Phys. B 81, 769–777(2005). [CrossRef]
  30. L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J. P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J. Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen–Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi–Cross, C. P. Rinsland, M. Rotger, M. Simecková, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. Vander Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009). [CrossRef]
  31. C. D. Rodgers, Inverse Methods for Atmospheric Sounding: Theory and Practice, Atmospheric, Oceanic and Planetary Physics (World Scientific, 2000), Vol. 2.
  32. A. Dudhia, “Reference forward model software user’s manual,” http://www.atm.ox.ac.uk/RFM/sum .
  33. European Centre for Medium-Range Weather Forecasts, “ECMWF data archive services,” http://www.ecmwf.int/products/data/archive/ .
  34. D. McNaughton, D. McGilvery, and E. G. Robertson, “High-resolution FTIR-jet spectroscopy of CCl2F2,” J. Chem. Soc. Faraday Trans. 90, 1055–1060 (1994). [CrossRef]
  35. M. Morillon–Chapey, A. O. Diallo, and J. C. Deroche, “Isotopic and vibrational assignments of fluorocarbon-12 in the 8.6 μm and 10.8 μm regions,” J. Mol. Spectrosc. 88, 424–427(1981). [CrossRef]
  36. P. F. Fogal, R. D. Blatherwick, F. J. Murcray, and J. R. Olson, “Infra-red FTS measurements of CH4, N2O, O3, HNO3, HCl, CFC-11 and CFC-12 from the MANTRA balloon campaign,” Atmos. Ocean 43, 351–359 (2005). [CrossRef]
  37. M. K. Ejiri, Y. Terao, T. Sugita, H. Nakajima, T. Yokota, G. C. Toon, B. Sen, G. Wetzel, H. Oelhaf, J. Urban, D. Murtagh, H. Irie, N. Saitoh, T. Tanaka, H. Kanzawa, M. Shiotani, S. Aoki, G. Hashida, T. Machida, T. Nakazawa, H. Kobayashi, and Y. Sasano, “Validation of the improved limb atmospheric spectrometer-II (ILAS-II) version 1.4 nitrous oxide and methane profiles,” J. Geophys. Res. 111, D22S90 (2006). [CrossRef]
  38. R. G. Prinn, R. F. Weiss, P. J. Fraser, P. G. Simmonds, S. O’Doherty, P. Salameh, L. Porter, P. Krummel, R. H. J. Wang, B. R. Miller, C. Harth, B. Greally, F. A. Van Woy, L. P. Steele, J. Muehle, G. Sturrock, F. N. Alyea, J. Huang, and D. E. Hartley, “The ALE/GAGE/AGAGE network,” http://cdiac.ornl.gov/ndps/alegage.html .
  39. R. Parker, H. Boesch, A. Cogan, A. Fraser, L. Feng, P. I. Palmer, J. Messerschmidt, N. Deutscher, D. W. T. Griffith, J. Notholt, P. O. Wennberg, and D. Wunch, “Methane observations from the greenhouse gases observing SATellite: Comparison to ground-based TCCON data and model calculations,” Geophys. Res. Lett. 38, L15807 (2011). [CrossRef]
  40. G. Toon, J. F. Blavier, R. Waschenfelder, D. Wunsch, G. Keppel–Aleks, P. Wennberg, B. Connor, V. Sherlock, D. Griffith, N. Deutscher, and J. Notholt, “Total column carbon observing network (TCCON),” in Fourier Transform Spectroscopy, OSA Technical Digest (Optical Society of America, 2009), JMA3.
  41. R. H. Norton and R. Beer, “New apodizing functions for Fourier spectrometry,” J. Opt. Soc. Am. 66, 259–264 (1976). [CrossRef]
  42. T. Tsai and G. Wysocki, “Active wavelength control of an external cavity quantum cascade laser,” Appl. Phys. B 109, 415–421 (2012). [CrossRef]
  43. P. Edin, Assessment of High Altitude Long Endurance (HALE) Platforms (European Space Agency, 1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited