OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 36 — Dec. 20, 2012
  • pp: 8793–8799

Effects of thermal gradients on total internal reflection corner cubes

Scott D. Goodrow and Thomas W. Murphy, Jr.  »View Author Affiliations

Applied Optics, Vol. 51, Issue 36, pp. 8793-8799 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1946 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Uncoated corner cube retroreflectors (CCRs) operating via total internal reflection (TIR) are less susceptible to internal heating than their metal-coated analogs, lacking an absorber on the rear surface. Even so, environments that induce differential heating within the CCR will result in thermal lensing of the incident wavefront, introducing aberrations that will generally reduce the central irradiance of the polarization-sensitive far-field diffraction pattern (FFDP). In this paper, we characterize the sensitivity of TIR CCRs to axial and radial thermal gradients. We present simulated FFDPs for key input polarizations and incidence angles and provide a generalized analytic model that approximates the behavior of the central irradiance as temperature differences are introduced.

© 2012 Optical Society of America

OCIS Codes
(220.1010) Optical design and fabrication : Aberrations (global)
(260.1960) Physical optics : Diffraction theory
(260.5430) Physical optics : Polarization
(260.6970) Physical optics : Total internal reflection
(350.6830) Other areas of optics : Thermal lensing
(260.2710) Physical optics : Inhomogeneous optical media

ToC Category:
Physical Optics

Original Manuscript: August 31, 2012
Revised Manuscript: November 21, 2012
Manuscript Accepted: November 23, 2012
Published: December 20, 2012

Scott D. Goodrow and Thomas W. Murphy, "Effects of thermal gradients on total internal reflection corner cubes," Appl. Opt. 51, 8793-8799 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. W. Murphy, E. G. Adelberger, J. B. R. Battat, C. D. Hoyle, R. J. McMillan, E. L. Michelsen, R. L. Samad, C. W. Stubbs, and H. E. Swanson, “Long-term degradation of optical devices on the Moon,” Icarus 208, 31–35 (2010). [CrossRef]
  2. A. G. Emslie and P. F. Strong, “Optical distortion caused by a vertical temperature gradient in a retro-reflector,” Apollo Laser Ranging Retro-Reflector Experiment, SO78, final report (1971), pp. 272–286, http://hdl.handle.net/2060/19710011991.
  3. J. E. Faller, “The Apollo retroreflector arrays and a new multi-lensed receiver telescope,” in Space Research XII (Akademie-Verlag, 1972), pp. 235–246.
  4. J. L. Zurasky, “Cube corner retroreflector test and analysis,” Appl. Opt. 15, 445–452 (1976). [CrossRef]
  5. D. G. Currie, S. Dell’Agnello, and G. O. Delle Monache, “A lunar laser ranging retroreflector array for the 21st century,” Acta Astronaut. 68, 667–680 (2011). [CrossRef]
  6. S. Dell’Agnello, G. O. Delle Monache, D. G. Currie, R. Vittori, C. Cantone, M. Garattini, A. Boni, M. Martini, C. Lops, N. Intaglietta, R. Tauraso, D. A. Arnold, M. R. Pearlman, G. Bianco, S. Zerbini, M. Maiello, S. Berardi, L. Porcelli, C. O. Alley, J. F. McGarry, C. Sciarretta, V. Luceri, and T. W. Zagwodzki, “Creation of the new industry-standard space test of laser retroreflectors for the GNSS and LAGEOS,” Adv. Space Res. 47, 822–842 (2011). [CrossRef]
  7. T. W. Murphy, E. G. Adelberger, J. B. R. Battat, L. N. Carey, C. D. Hoyle, P. LeBlanc, E. L. Michelsen, K. Nordtvedt, A. E. Orin, J. D. Strasburg, C. W. Stubbs, H. E. Swanson, and E. Williams, “The apache point observatory lunar laser-ranging operation: instrument description and first detections,” Publ. Astron. Soc. Pac. 120, 20–37 (2008). [CrossRef]
  8. T. W. Murphy and S. D. Goodrow, “Polarization and far-field diffraction patterns of total internal reflection corner cubes,” Appl. Opt., doc. id 175366 (to be published).
  9. Haraeus Qurzglas, “Quartz glass for optics data and properties,” May2011, http://optics.heraeus-quarzglas.com .
  10. http://physics.ucsd.edu/tmurphy/papers/ccr-sim/ccr-sim.html .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited